
## Michael Hellwig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1690788/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Baking, Ageing, Diabetes: A Short History of the Maillard Reaction. Angewandte Chemie - International<br>Edition, 2014, 53, 10316-10329.                                                                                | 7.2 | 352       |
| 2  | 1,2-Dicarbonyl Compounds in Commonly Consumed Foods. Journal of Agricultural and Food Chemistry, 2012, 60, 7071-7079.                                                                                                   | 2.4 | 288       |
| 3  | Transport of Free and Peptideâ€Bound Glycated Amino Acids: Synthesis, Transepithelial Flux at Cacoâ€2<br>Cell Monolayers, and Interaction with Apical Membrane Transport Proteins. ChemBioChem, 2011, 12,<br>1270-1279. | 1.3 | 142       |
| 4  | The Chemistry of Protein Oxidation in Food. Angewandte Chemie - International Edition, 2019, 58, 16742-16763.                                                                                                           | 7.2 | 129       |
| 5  | 3-Deoxygalactosone, a "New―1,2-Dicarbonyl Compound in Milk Products. Journal of Agricultural and<br>Food Chemistry, 2010, 58, 10752-10760.                                                                              | 2.4 | 99        |
| 6  | Stability of Individual Maillard Reaction Products in the Presence of the Human Colonic Microbiota.<br>Journal of Agricultural and Food Chemistry, 2015, 63, 6723-6730.                                                 | 2.4 | 98        |
| 7  | Food-derived 1,2-dicarbonyl compounds and their role in diseases. Seminars in Cancer Biology, 2018, 49, 1-8.                                                                                                            | 4.3 | 82        |
| 8  | Metabolic Transit of Dietary Methylglyoxal. Journal of Agricultural and Food Chemistry, 2013, 61,<br>10253-10260.                                                                                                       | 2.4 | 79        |
| 9  | N-ε-fructosyllysine and N-ε-carboxymethyllysine, but not lysinoalanine, are available for absorption<br>after simulated gastrointestinal digestion. Amino Acids, 2014, 46, 289-299.                                     | 1.2 | 79        |
| 10 | Transport of Free and Peptide-Bound Pyrraline at Intestinal and Renal Epithelial Cells. Journal of<br>Agricultural and Food Chemistry, 2009, 57, 6474-6480.                                                             | 2.4 | 73        |
| 11 | Analysis of Protein Oxidation in Food and Feed Products. Journal of Agricultural and Food Chemistry, 2020, 68, 12870-12885.                                                                                             | 2.4 | 70        |
| 12 | Free and Protein-Bound Maillard Reaction Products in Beer: Method Development and a Survey of<br>Different Beer Types. Journal of Agricultural and Food Chemistry, 2016, 64, 7234-7243.                                 | 2.4 | 64        |
| 13 | Metabolization of the Advanced Glycation End Product <i>N</i> -ε-Carboxymethyllysine (CML) by<br>Different Probiotic <i>E. coli</i> Strains. Journal of Agricultural and Food Chemistry, 2019, 67,<br>1963-1972.        | 2.4 | 50        |
| 14 | Transport of the Advanced Glycation End Products Alanylpyrraline and Pyrralylalanine by the Human<br>Proton-Coupled Peptide Transporter hPEPT1. Journal of Agricultural and Food Chemistry, 2010, 58,<br>2543-2547.     | 2.4 | 49        |
| 15 | Quantification of the Maillard reaction product 6-(2-formyl-1-pyrrolyl)-l-norleucine (formyline) in food. European Food Research and Technology, 2012, 235, 99-106.                                                     | 1.6 | 40        |
| 16 | Effects of Exogenous Dietary Advanced Glycation End Products on the Cross-Talk Mechanisms Linking<br>Microbiota to Metabolic Inflammation. Nutrients, 2020, 12, 2497.                                                   | 1.7 | 40        |
| 17 | Release of pyrraline in absorbable peptides during simulated digestion of casein glycated by<br>3-deoxyglucosone. European Food Research and Technology, 2013, 237, 47-55.                                              | 1.6 | 37        |
| 18 | Dietary Influence on Urinary Excretion of 3-Deoxyglucosone and Its Metabolite 3-Deoxyfructose.<br>Journal of Agricultural and Food Chemistry, 2014, 62, 2449-2456.                                                      | 2.4 | 36        |

MICHAEL HELLWIG

| #  | Article                                                                                                                                                                                                               | IF         | CITATIONS     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 19 | Quality Criteria for Studies on Dietary Glycation Compounds and Human Health. Journal of Agricultural and Food Chemistry, 2019, 67, 11307-11311.                                                                      | 2.4        | 35            |
| 20 | Occurrence of ( <i>Z</i> )-3,4-Dideoxyglucoson-3-ene in Different Types of Beer and Malt Beer as a<br>Result of 3-Deoxyhexosone Interconversion. Journal of Agricultural and Food Chemistry, 2016, 64,<br>2746-2753.  | 2.4        | 33            |
| 21 | Maillard Reaction Products in Different Types of Brewing Malt. Journal of Agricultural and Food<br>Chemistry, 2020, 68, 14274-14285.                                                                                  | 2.4        | 33            |
| 22 | Influence of the Maillard Reaction on the Allergenicity of Food Proteins and the Development of Allergic Inflammation. Current Allergy and Asthma Reports, 2019, 19, 4.                                               | 2.4        | 32            |
| 23 | Formyline, a new glycation compound from the reaction of lysine and 3-deoxypentosone. European<br>Food Research and Technology, 2010, 230, 903-914.                                                                   | 1.6        | 31            |
| 24 | Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka ( <i>Leptospermum) Tj ETQqO O O rgBT الإ</i>                                                                                                     | Overlock 1 | 0 Tf 50 542 T |
| 25 | Lysine-Derived Protein-Bound Heyns Compounds in Bakery Products. Journal of Agricultural and Food<br>Chemistry, 2017, 65, 10562-10570.                                                                                | 2.4        | 28            |
| 26 | Individual Maillard reaction products as indicators of heat treatment of pasta $\hat{a} \in$ " A survey of commercial products. Journal of Food Composition and Analysis, 2018, 72, 83-92.                            | 1.9        | 27            |
| 27 | Formation of 3-deoxyglucosone in the malting process. Food Chemistry, 2019, 290, 187-195.                                                                                                                             | 4.2        | 24            |
| 28 | Synthesis and intestinal transport of the iron chelator maltosine in free and dipeptide form. European<br>Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 75-82.                                             | 2.0        | 20            |
| 29 | Biodistribution and catabolism of 18F-labeled N-ε-fructoselysine as a model of Amadori products.<br>Nuclear Medicine and Biology, 2006, 33, 865-873.                                                                  | 0.3        | 16            |
| 30 | Association between Advanced Glycation End Products and Impaired Fasting Glucose: Results from the SALIA Study. PLoS ONE, 2015, 10, e0128293.                                                                         | 1.1        | 16            |
| 31 | Model Studies on the Oxidation of Benzoyl Methionine in a Carbohydrate Degradation System. Journal of Agricultural and Food Chemistry, 2014, 62, 4425-4433.                                                           | 2.4        | 15            |
| 32 | Quantitation of Methionine Sulfoxide in Milk and Milk-Based Beverages—Minimizing Artificial<br>Oxidation by Anaerobic Enzymatic Hydrolysis. Journal of Agricultural and Food Chemistry, 2019, 67,<br>8967-8976.       | 2.4        | 15            |
| 33 | Quantification of the glycation compound 6-(3-hydroxy-4-oxo-2-methyl-4(1H)-pyridin-1-yl)-l-norleucine<br>(maltosine) in model systems and food samples. European Food Research and Technology, 2016, 242,<br>547-557. | 1.6        | 14            |
| 34 | Peptide backbone cleavage by <i>α</i> -amidation is enhanced at methionine residues. Journal of Peptide<br>Science, 2015, 21, 17-23.                                                                                  | 0.8        | 12            |
| 35 | Transformation of Free and Dipeptideâ€Bound Glycated Amino Acids by Two Strains of <i>Saccharomyces cerevisiae</i> . ChemBioChem, 2017, 18, 266-275.                                                                  | 1.3        | 12            |
| 36 | Influence of 3-DG as a Key Precursor Compound on Aging of Lager Beers. Journal of Agricultural and<br>Food Chemistry, 2021, 69, 3732-3740.                                                                            | 2.4        | 12            |

MICHAEL HELLWIG

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Comprehensive Evaluation of Flavor Instability of Beer (Part 2): The Influence of De Novo Formation of Aging Aldehydes. Foods, 2021, 10, 2668.                                                                                                                   | 1.9 | 12        |
| 38 | Yeast Metabolites of Glycated Amino Acids in Beer. Journal of Agricultural and Food Chemistry, 2018, 66, 7451-7460.                                                                                                                                                | 2.4 | 11        |
| 39 | Quantitation of free glycation compounds in saliva. PLoS ONE, 2019, 14, e0220208.                                                                                                                                                                                  | 1.1 | 10        |
| 40 | Transcriptional regulation of the <i>N</i> <sub>ε</sub> â€fructoselysine metabolism in <i>Escherichia<br/>coli</i> by global and substrateâ€specific cues. Molecular Microbiology, 2021, 115, 175-190.                                                             | 1.2 | 10        |
| 41 | In Vitro Evaluation of the Toxicological Profile and Oxidative Stress of Relevant Diet-Related<br>Advanced Glycation End Products and Related 1,2-Dicarbonyls. Oxidative Medicine and Cellular<br>Longevity, 2021, 2021, 1-20.                                     | 1.9 | 9         |
| 42 | Reduction of 5-Hydroxymethylfurfural and 1,2-Dicarbonyl Compounds by <i>Saccharomyces<br/>cerevisiae</i> in Model Systems and Beer. Journal of Agricultural and Food Chemistry, 2021, 69,<br>12807-12817.                                                          | 2.4 | 9         |
| 43 | Food Protein Sterylation: Chemical Reactions between Reactive Amino Acids and Sterol Oxidation<br>Products under Food Processing Conditions. Foods, 2020, 9, 1882.                                                                                                 | 1.9 | 7         |
| 44 | Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biological Chemistry, 2022, 403, 819-858.                                                                                                    | 1.2 | 7         |
| 45 | Studies on the influence of dietary 3-deoxyglucosone on the urinary excretion of 2-keto-3-deoxygluconic acid. European Food Research and Technology, 2018, 244, 1389-1396.                                                                                         | 1.6 | 6         |
| 46 | Studies on the synthesis and stability of $\hat{I}$ ±-ketoacyl peptides. Amino Acids, 2020, 52, 1425-1438.                                                                                                                                                         | 1.2 | 6         |
| 47 | Unique fluorescence and high-molecular weight characteristics of protein isolates from manuka honey ( Leptospermum scoparium ). Food Research International, 2017, 99, 469-475.                                                                                    | 2.9 | 6         |
| 48 | Salivary nitrate/nitrite and acetaldehyde in humans: potential combination effects in the upper<br>gastrointestinal tract and possible consequences for the in vivo formation of N-nitroso<br>compounds—a hypothesis. Archives of Toxicology, 2022, 96, 1905-1914. | 1.9 | 5         |
| 49 | Studies about the Dietary Impact on "Free―Glycation Compounds in Human Saliva. Foods, 2022, 11, 2112.                                                                                                                                                              | 1.9 | 5         |
| 50 | Glycation of N-ε-carboxymethyllysine. European Food Research and Technology, 2022, 248, 825-837.                                                                                                                                                                   | 1.6 | 4         |
| 51 | ldentification of <i>Pseudomonas asiatica</i> subsp. <i>bavariensis</i> str. <scp>JM1</scp> as the first<br><i>N</i> <sub><i>ε</i></sub> â€carboxy(m)ethyllysineâ€degrading soil bacterium. Environmental<br>Microbiology, 2022, 24, 3229-3241.                    | 1.8 | 4         |
| 52 | Isolation and quantification in food of 6-(2-formyl-5-methylpyrrol-1-yl)-l-norleucine ("rhamnolysineâ€ <del>)</del><br>and its precursor 3,6-dideoxy-l-mannosone. European Food Research and Technology, 2019, 245,<br>1149-1159.                                  | 1.6 | 3         |
| 53 | Die Chemie der Proteinoxidation in Lebensmitteln. Angewandte Chemie, 2019, 131, 16896-16918.                                                                                                                                                                       | 1.6 | 2         |
| 54 | Advanced Glycation End Products (AGEs): Occurrence and Risk Assessment. , 2019, , 525-531.                                                                                                                                                                         |     | 2         |

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Trendbericht Lebensmittelchemie. Nachrichten Aus Der Chemie, 2020, 68, 54-57.                                                                     | 0.0 | 2         |
| 56 | Methionineâ€associated peptide αâ€amidation is directed both to the N―and the Câ€ŧerminal amino acids.<br>Journal of Peptide Science, 2022, 28, . | 0.8 | 1         |