List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1690709/publications.pdf Version: 2024-02-01

		733	2178
377	45,941	120	202
papers	citations	h-index	g-index
381	381	381	28513
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6. Journal of Physical Chemistry B, 2005, 109, 22432-22439.	1.2	1,170
2	Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry A, 2013, 1, 14766.	5.2	1,080
3	Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Applied Catalysis B: Environmental, 2011, 101, 382-387.	10.8	1,034
4	Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy and Environmental Science, 2011, 4, 2922.	15.6	1,005
5	Synthesis of Square Bi2WO6Nanoplates as High-Activity Visible-Light-Driven Photocatalysts. Chemistry of Materials, 2005, 17, 3537-3545.	3.2	873
6	Dramatic Activity of C ₃ N ₄ /BiPO ₄ Photocatalyst with Core/Shell Structure Formed by Selfâ€Assembly. Advanced Functional Materials, 2012, 22, 1518-1524.	7.8	819
7	Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir, 2012, 28, 8418-8425.	1.6	739
8	Photocatalytic Activity Enhanced via g-C ₃ N ₄ Nanoplates to Nanorods. Journal of Physical Chemistry C, 2013, 117, 9952-9961.	1.5	602
9	A Strategy of Enhancing the Photoactivity of g-C ₃ N ₄ via Doping of Nonmetal Elements: A First-Principles Study. Journal of Physical Chemistry C, 2012, 116, 23485-23493.	1.5	590
10	Effect of Phase Structure of MnO ₂ Nanorod Catalyst on the Activity for CO Oxidation. Journal of Physical Chemistry C, 2008, 112, 5307-5315.	1.5	577
11	Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy, 2019, 59, 644-650.	8.2	553
12	New Type of BiPO ₄ Oxy-Acid Salt Photocatalyst with High Photocatalytic Activity on Degradation of Dye. Environmental Science & Technology, 2010, 44, 5570-5574.	4.6	551
13	Dramatic Visible Photocatalytic Degradation Performances Due to Synergetic Effect of TiO ₂ with PANI. Environmental Science & Technology, 2008, 42, 3803-3807.	4.6	488
14	Photocorrosion Inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with C ₆₀ . Environmental Science & amp; Technology, 2008, 42, 8064-8069.	4.6	482
15	Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Applied Catalysis B: Environmental, 2017, 211, 79-88.	10.8	481
16	Enhancement of visible photocatalytic activity via Ag@C3N4 core–shell plasmonic composite. Applied Catalysis B: Environmental, 2014, 147, 82-91.	10.8	461
17	Performance Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene Hybridization. Langmuir, 2013, 29, 3097-3105.	1.6	452
18	Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy and Environmental Science, 2018, 11, 2581-2589.	15.6	451

#	Article	IF	CITATIONS
19	Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Applied Catalysis B: Environmental, 2010, 98, 138-146.	10.8	441
20	Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxide via Hybridization with Monolayer Polyaniline. Journal of Physical Chemistry C, 2009, 113, 4605-4611.	1,5	395
21	Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification. Applied Catalysis B: Environmental, 2014, 152-153, 262-270.	10.8	388
22	Surface oxygen vacancy induced α-MnO 2 nanofiber for highly efficient ozone elimination. Applied Catalysis B: Environmental, 2017, 209, 729-737.	10.8	380
23	Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Applied Catalysis B: Environmental, 2017, 219, 611-618.	10.8	375
24	Influence of Defects on the Photocatalytic Activity of ZnO. Journal of Physical Chemistry C, 2014, 118, 15300-15307.	1.5	361
25	Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Applied Catalysis B: Environmental, 2018, 220, 337-347.	10.8	357
26	Efficient Photocatalytic Overall Water Splitting Induced by the Giant Internal Electric Field of a g ₃ N ₄ /rGO/PDIP Zâ€5cheme Heterojunction. Advanced Materials, 2021, 33, e2007479.	11.1	354
27	Photocatalytic Degradation of RhB by Fluorinated Bi ₂ WO ₆ and Distributions of the Intermediate Products. Environmental Science & Technology, 2008, 42, 2085-2091.	4.6	351
28	Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. Journal of Materials Chemistry, 2012, 22, 11568.	6.7	342
29	Removal of Cr(VI) by 3D TiO 2 -graphene hydrogel via adsorption enriched with photocatalytic reduction. Applied Catalysis B: Environmental, 2016, 199, 412-423.	10.8	338
30	Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. Applied Catalysis B: Environmental, 2006, 66, 100-110.	10.8	334
31	Selfâ€Assembled PDINH Supramolecular System for Photocatalysis under Visible Light. Advanced Materials, 2016, 28, 7284-7290.	11.1	333
32	Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide. Analytical Chemistry, 2002, 74, 120-124.	3.2	332
33	Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Applied Catalysis B: Environmental, 2015, 164, 77-81.	10.8	329
34	Synergetic Effect of Bi ₂ WO ₆ Photocatalyst with C ₆₀ and Enhanced Photoactivity under Visible Irradiation. Environmental Science & Technology, 2007, 41, 6234-6239.	4.6	326
35	CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Applied Catalysis B: Environmental, 2020, 266, 118602.	10.8	324
36	Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. Applied Catalysis B: Environmental, 2020, 277, 119122.	10.8	317

#	Article	IF	CITATIONS
37	Photocorrosion Suppression of ZnO Nanoparticles via Hybridization with Graphite-like Carbon and Enhanced Photocatalytic Activity. Journal of Physical Chemistry C, 2009, 113, 2368-2374.	1.5	316
38	Enhanced Visible-Light-Driven Photocatalytic Disinfection Performance and Organic Pollutant Degradation Activity of Porous g-C ₃ N ₄ Nanosheets. ACS Applied Materials & Interfaces, 2017, 9, 27727-27735.	4.0	300
39	A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts. Catalysis Science and Technology, 2012, 2, 694.	2.1	299
40	Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with 3D network structure. Applied Catalysis B: Environmental, 2018, 221, 36-46.	10.8	289
41	Enhancement of visible light photocatalytic activities via porous structure of g-C3N4. Applied Catalysis B: Environmental, 2014, 147, 229-235.	10.8	285
42	Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance. Langmuir, 2013, 29, 10566-10572.	1.6	284
43	3D-3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Applied Catalysis B: Environmental, 2017, 205, 228-237.	10.8	272
44	Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets. Journal of Materials Chemistry A, 2014, 2, 15377.	5.2	267
45	Visible Photocatalytic Activity Enhancement of ZnWO ₄ by Graphene Hybridization. ACS Catalysis, 2012, 2, 2769-2778.	5.5	260
46	Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Applied Catalysis B: Environmental, 2010, 100, 179-183.	10.8	259
47	Origin of Photocatalytic Activation of Silver Orthophosphate from First-Principles. Journal of Physical Chemistry C, 2011, 115, 4680-4687.	1.5	259
48	Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film. Applied Catalysis B: Environmental, 2017, 201, 600-606.	10.8	258
49	Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. Chemical Engineering Journal, 2019, 370, 287-294.	6.6	258
50	Synergetic activation of peroxymonosulfate by Co3O4 modified g-C3N4 for enhanced degradation of diclofenac sodium under visible light irradiation. Applied Catalysis B: Environmental, 2017, 218, 810-818.	10.8	255
51	Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Applied Catalysis B: Environmental, 2017, 200, 222-229.	10.8	253
52	Significant Visible Photoactivity and Antiphotocorrosion Performance of CdS Photocatalysts after Monolayer Polyaniline Hybridization. Journal of Physical Chemistry C, 2010, 114, 5822-5826.	1.5	252
53	Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO ₄ nanorod. Journal of Materials Chemistry A, 2014, 2, 1174-1182.	5.2	252
54	A high-performance Bi2O3/Bi2SiO5 p-n heterojunction photocatalyst induced by phase transition of Bi2O3. Applied Catalysis B: Environmental, 2018, 237, 59-67.	10.8	252

#	Article	IF	CITATIONS
55	Steering Electron–Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angewandte Chemie - International Edition, 2021, 60, 8236-8242.	7.2	249
56	Synergetic Degradation of Rhodamine B at a Porous ZnWO4Film Electrode by Combined Electro-Oxidation and Photocatalysis. Environmental Science & Technology, 2006, 40, 3367-3372.	4.6	232
57	Enhanced Photocatalytic Performance for the BiPO _{4–<i>x</i>} Nanorod Induced by Surface Oxygen Vacancy. Journal of Physical Chemistry C, 2013, 117, 18520-18528.	1.5	222
58	Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light. Applied Catalysis B: Environmental, 2017, 219, 53-62.	10.8	219
59	Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. Journal of Alloys and Compounds, 2019, 802, 196-209.	2.8	217
60	Significantly enhancement of photocatalytic performances via core–shell structure of ZnO@mpg-C3N4. Applied Catalysis B: Environmental, 2014, 147, 554-561.	10.8	215
61	Surface-modification of SiO2 nanoparticles with oleic acid. Applied Surface Science, 2003, 211, 315-320.	3.1	213
62	Polyaniline/Carbon Nitride Nanosheets Composite Hydrogel: A Separationâ€Free and Highâ€Efficient Photocatalyst with 3D Hierarchical Structure. Small, 2016, 12, 4370-4378.	5.2	209
63	Effects of Mo Replacement on the Structure and Visible-Light-Induced Photocatalytic Performances of Bi ₂ WO ₆ Photocatalyst. ACS Catalysis, 2011, 1, 841-848.	5.5	204
64	Controlled Synthesis of the ZnWO ₄ Nanostructure and Effects on the Photocatalytic Performance. Inorganic Chemistry, 2007, 46, 8372-8378.	1.9	200
65	Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process. Applied Catalysis A: General, 2006, 306, 58-67.	2.2	198
66	A Fullâ€Spectrum Metalâ€Free Porphyrin Supramolecular Photocatalyst for Dual Functions of Highly Efficient Hydrogen and Oxygen Evolution. Advanced Materials, 2019, 31, e1806626.	11.1	198
67	Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. Applied Catalysis B: Environmental, 2009, 89, 570-576.	10.8	197
68	Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance. Applied Catalysis B: Environmental, 2017, 202, 289-297.	10.8	195
69	Removal of bisphenol A over a separation free 3D Ag 3 PO 4 -graphene hydrogel via an adsorption-photocatalysis synergy. Applied Catalysis B: Environmental, 2017, 212, 41-49.	10.8	194
70	Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Applied Catalysis B: Environmental, 2015, 166-167, 366-373.	10.8	193
71	Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 28, 87-115.	5.6	192
72	Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Applied Catalysis B: Environmental, 2017, 217, 169-180.	10.8	190

#	Article	IF	CITATIONS
73	Photocatalytic Activity Enhancement for Bi ₂ WO ₆ by Fluorine Substitution. Journal of Physical Chemistry C, 2009, 113, 19633-19638.	1.5	189
74	Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation. Applied Catalysis B: Environmental, 2013, 138-139, 26-32.	10.8	183
75	Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 2018, 232, 175-181.	10.8	183
76	Photodegradation of phenol via C 3 N 4 -agar hybrid hydrogel 3D photocatalysts with free separation. Applied Catalysis B: Environmental, 2016, 183, 263-268.	10.8	181
77	Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. Journal of Molecular Catalysis A, 2007, 268, 101-106.	4.8	179
78	Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 234, 260-267.	10.8	177
79	Enhancement of visible light mineralization ability and photocatalytic activity of BiPO4/BiOI. Applied Catalysis B: Environmental, 2015, 163, 547-553.	10.8	176
80	Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst. Journal of Solid State Chemistry, 2003, 174, 104-110.	1.4	173
81	Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light. Environmental Science & Technology, 2003, 37, 4494-4499.	4.6	170
82	Recent developments in nanomaterial optical sensors. TrAC - Trends in Analytical Chemistry, 2004, 23, 351-360.	5.8	170
83	The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1â^'x photocatalyst. Catalysis Science and Technology, 2013, 3, 3136.	2.1	167
84	Fabrication of Wide–Range–Visible Photocatalyst Bi2WO6â^'x nanoplates via Surface Oxygen Vacancies. Scientific Reports, 2016, 6, 19347.	1.6	165
85	Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2019, 255, 117761.	10.8	164
86	Enhancement of mineralization ability for phenol via synergetic effect of photoelectrocatalysis of g-C3N4 film. Applied Catalysis B: Environmental, 2016, 180, 324-329.	10.8	162
87	Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. Nano Energy, 2017, 35, 405-414.	8.2	162
88	Size-controlled synthesis of BiPO4 nanocrystals for enhanced photocatalytic performance. Journal of Materials Chemistry, 2011, 21, 4235.	6.7	161
89	Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n-n heterojunction via Ï€-Ï€ interaction and interfacial charge separation. Applied Catalysis B: Environmental, 2020, 271, 118933.	10.8	161
90	Electron Spin Resonance Spin-Trapping Detection of Radical Intermediates in N-Doped TiO2-Assisted Photodegradation of 4-Chlorophenol. Journal of Physical Chemistry B, 2006, 110, 3061-3065.	1.2	160

#	Article	IF	CITATIONS
91	Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Applied Catalysis B: Environmental, 2017, 204, 11-20.	10.8	160
92	A Highly Crystalline Perylene Imide Polymer with the Robust Builtâ€In Electric Field for Efficient Photocatalytic Water Oxidation. Advanced Materials, 2020, 32, e1907746.	11.1	160
93	Tuning the K ⁺ Concentration in the Tunnels of α-MnO ₂ To Increase the Content of Oxygen Vacancy for Ozone Elimination. Environmental Science & Technology, 2018, 52, 8684-8692.	4.6	158
94	Enhanced Photocatalytic Activity of ZnWO ₄ Catalyst via Fluorine Doping. Journal of Physical Chemistry C, 2007, 111, 11952-11958.	1.5	157
95	Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties. Journal of Solid State Chemistry, 2006, 179, 62-69.	1.4	154
96	Correlation Effects on Lattice Relaxation and Electronic Structure of ZnO within the GGA+ <i>U</i> Formalism. Journal of Physical Chemistry C, 2013, 117, 26029-26039.	1.5	151
97	Photocatalytic H ₂ evolution on MoS ₂ –TiO ₂ catalysts synthesized via mechanochemistry. Physical Chemistry Chemical Physics, 2015, 17, 933-940.	1.3	151
98	Photocatalytic performance of BiPO4 nanorods adjusted via defects. Applied Catalysis B: Environmental, 2016, 187, 204-211.	10.8	151
99	One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2017, 219, 63-72.	10.8	150
100	Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sensors and Actuators B: Chemical, 2008, 134, 761-768.	4.0	143
101	Ultrathin nanosheets g-C3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity. Applied Catalysis B: Environmental, 2018, 237, 633-640.	10.8	143
102	Photocatalytic hydrogen generation on bifunctional ternary heterostructured In ₂ S ₃ /MoS ₂ /CdS composites with high activity and stability under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 18406-18412.	5.2	142
103	Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4. Catalysis Science and Technology, 2011, 1, 1399.	2.1	141
104	Photocatalytic enhancement of hybrid C ₃ N ₄ /TiO ₂ prepared via ball milling method. Physical Chemistry Chemical Physics, 2015, 17, 3647-3652.	1.3	141
105	Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Materials Research Bulletin, 2007, 42, 696-706.	2.7	140
106	Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. Applied Catalysis B: Environmental, 2009, 89, 425-431.	10.8	139
107	Construction of Interfacial Electric Field via Dualâ€Porphyrin Heterostructure Boosting Photocatalytic Hydrogen Evolution. Advanced Materials, 2022, 34, e2106807.	11.1	139
108	Enhancement of visible photocatalytic performances of a Bi ₂ MoO ₆ –BiOCl nanocomposite with plate-on-plate heterojunction structure. Physical Chemistry Chemical Physics, 2014, 16, 26314-26321.	1.3	138

#	Article	IF	CITATIONS
109	π–π Interaction between self-assembled perylene diimide and 3D graphene for excellent visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2019, 240, 225-233.	10.8	136
110	Effect of Compensated Codoping on the Photoelectrochemical Properties of Anatase TiO ₂ Photocatalyst. Journal of Physical Chemistry C, 2011, 115, 16963-16969.	1.5	135
111	Structure and photocatalytic performances of glass/SnO2/TiO2 interface composite film. Applied Catalysis A: General, 2004, 257, 25-32.	2.2	134
112	Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat, 2019, 1, e12007.	6.8	134
113	ZnWO4 photocatalyst with high activity for degradation of organic contaminants. Journal of Alloys and Compounds, 2007, 432, 269-276.	2.8	132
114	A review of BiPO ₄ , a highly efficient oxyacid-type photocatalyst, used for environmental applications. Catalysis Science and Technology, 2015, 5, 3071-3083.	2.1	132
115	A simple and efficient strategy for the synthesis of a chemically tailored g-C ₃ N ₄ material. Journal of Materials Chemistry A, 2014, 2, 17521-17529.	5.2	128
116	Enhanced photoactivity and oxidizing ability simultaneously via internal electric field and valence band position by crystal structure of bismuth oxyiodide. Applied Catalysis B: Environmental, 2020, 262, 118262.	10.8	128
117	Synthesis and photocatalytic performance of ZnWO4 catalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 139, 201-208.	1.7	127
118	Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Applied Catalysis B: Environmental, 2013, 142-143, 561-567.	10.8	127
119	Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation. Applied Catalysis B: Environmental, 2021, 291, 120127.	10.8	127
120	The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor. Journal of Materials Science, 2000, 35, 4049-4054.	1.7	126
121	Photoelectrocatalytic degradation of 4-chlorophenol at Bi2WO6 nanoflake film electrode under visible light irradiation. Applied Catalysis B: Environmental, 2007, 72, 92-97.	10.8	125
122	Efficient and stable photocatalytic degradation of tetracycline wastewater by 3D Polyaniline/Perylene diimide organic heterojunction under visible light irradiation. Chemical Engineering Journal, 2020, 397, 125476.	6.6	124
123	Structure and photocatalytic characteristics of TiO2 film photocatalyst coated on stainless steel webnet. Journal of Molecular Catalysis A, 2003, 202, 187-195.	4.8	123
124	A Fullâ€Spectrum Porphyrin–Fullerene D–A Supramolecular Photocatalyst with Giant Builtâ€In Electric Field for Efficient Hydrogen Production. Advanced Materials, 2021, 33, e2101026.	11.1	122
125	Fluorine mediated photocatalytic activity of BiPO4. Applied Catalysis B: Environmental, 2014, 147, 851-857.	10.8	121
126	Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Applied Catalysis B: Environmental, 2018, 231, 251-261.	10.8	121

#	Article	IF	CITATIONS
127	Enhancement of photocatalytic performance via a P3HT-g-C ₃ N ₄ heterojunction. Journal of Materials Chemistry A, 2015, 3, 2741-2747.	5.2	119
128	Influence of OH-related defects on the performances of BiPO4 photocatalyst for the degradation of rhodamine B. Applied Catalysis B: Environmental, 2012, 115-116, 314-319.	10.8	118
129	Enhancement of photocatalytic activity for BiPO ₄ via phase junction. Journal of Materials Chemistry A, 2014, 2, 13041-13048.	5.2	118
130	Visible-Light Photocatalytic Degradation of BiTaO ₄ Photocatalyst and Mechanism of Photocorrosion Suppression. Journal of Physical Chemistry C, 2010, 114, 6472-6477.	1.5	117
131	Designed synthesis of a p-Ag ₂ S/n-PDI self-assembled supramolecular heterojunction for enhanced full-spectrum photocatalytic activity. Journal of Materials Chemistry A, 2019, 7, 6482-6490.	5.2	117
132	Synthesis and characterization of the ZnO/mpg-C ₃ N ₄ heterojunction photocatalyst with enhanced visible light photoactivity. Dalton Transactions, 2014, 43, 13105-13114.	1.6	116
133	Controlled synthesis of a highly dispersed BiPO ₄ photocatalyst with surface oxygen vacancies. Nanoscale, 2015, 7, 13943-13950.	2.8	116
134	Preparation of visible light-driven g-C ₃ N ₄ @ZnO hybrid photocatalyst via mechanochemistry. Physical Chemistry Chemical Physics, 2014, 16, 17627-17633.	1.3	112
135	Supramolecular Zinc Porphyrin Photocatalyst with Strong Reduction Ability and Robust Builtâ€In Electric Field for Highly Efficient Hydrogen Production. Advanced Energy Materials, 2021, 11, 2101392.	10.2	111
136	Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods. Materials Chemistry and Physics, 2004, 87, 87-90.	2.0	110
137	Significant enhancement of the visible photocatalytic degradation performances of Î ³ -Bi2MoO6 nanoplate by graphene hybridization. Journal of Molecular Catalysis A, 2011, 340, 77-82.	4.8	110
138	Conjugated Polymers with Sequential Fluorination for Enhanced Photocatalytic H ₂ Evolution via Proton-Coupled Electron Transfer. ACS Energy Letters, 2018, 3, 2544-2549.	8.8	109
139	Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion. Applied Catalysis B: Environmental, 2018, 236, 428-435.	10.8	108
140	Synergistic introducing of oxygen vacancies and hybrid of organic semiconductor: Realizing deep structure modulation on Bi5O7I for high-efficiency photocatalytic pollutant oxidation. Applied Catalysis B: Environmental, 2020, 265, 118562.	10.8	106
141	Encapsulate α-MnO2 nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition. Nature Communications, 2021, 12, 4152.	5.8	106
142	Constructing a novel Bi2SiO5/BiPO4 heterostructure with extended light response range and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2018, 236, 205-211.	10.8	105
143	Photocatalytic activity enhancement of PDI supermolecular via ï∈-ï€ action and energy level adjusting with graphene quantum dots. Applied Catalysis B: Environmental, 2021, 281, 119547.	10.8	104
144	The interaction of C60 fullerene and carbon nanotube with Ar ion beam. Applied Surface Science, 1999, 137, 83-90.	3.1	103

ZHU YONGFA

#	Article	IF	CITATIONS
145	Synthesis of ZnWO4 nanorods with [100] orientation and enhanced photocatalytic properties. Applied Catalysis B: Environmental, 2010, 100, 173-178.	10.8	103
146	Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation. Applied Surface Science, 2008, 254, 1825-1829.	3.1	102
147	Application of Multiwalled Carbon Nanotubes as a Solidâ€Phase Extraction Sorbent for Chlorobenzenes. Analytical Letters, 2004, 37, 3085-3104.	1.0	101
148	Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nature Communications, 2022, 13, 2067.	5.8	99
149	Amperometric Detection of Glucose with Glucose Oxidase Absorbed on Porous Nanocrystalline TiO2 Film. Electroanalysis, 2001, 13, 413-416.	1.5	98
150	Short-Range π–π Stacking Assembly on P25 TiO ₂ Nanoparticles for Enhanced Visible-Light Photocatalysis. ACS Catalysis, 2017, 7, 652-663.	5.5	98
151	Fabrication and photoelectrochemical properties of porous ZnWO4 film. Journal of Solid State Chemistry, 2006, 179, 2562-2570.	1.4	97
152	Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5 photocatalyst. Applied Catalysis B: Environmental, 2015, 172-173, 100-107.	10.8	94
153	Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance. Journal of Solid State Chemistry, 2004, 177, 3868-3872.	1.4	93
154	Catalytic behavior of hydrothermally synthesized La0.5Sr0.5MnO3 single-crystal cubes in the oxidation of CO and CH4. Journal of Catalysis, 2007, 250, 1-11.	3.1	93
155	Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance. Applied Catalysis B: Environmental, 2018, 233, 202-212.	10.8	93
156	Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Applied Catalysis B: Environmental, 2018, 239, 61-67.	10.8	92
157	Nanosized SrCO3-based chemiluminescence sensor for ethanol. Analytica Chimica Acta, 2002, 466, 69-78.	2.6	91
158	Fabrication of 3D ultra-light graphene aerogel/Bi2WO6 composite with excellent photocatalytic performance: A promising photocatalysts for water purification. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 288-296.	2.7	88
159	CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol. Applied Catalysis B: Environmental, 2021, 291, 120122.	10.8	88
160	Synthesis, characterization, and photocatalytic properties of InVO4 nanoparticles. Journal of Solid State Chemistry, 2006, 179, 804-811.	1.4	86
161	Photocatalytic performance enhanced via surface bismuth vacancy of Bi6S2O15 core/shell nanowires. Applied Catalysis B: Environmental, 2015, 176-177, 306-314.	10.8	86
162	Three-dimensional photocatalysts with a network structure. Journal of Materials Chemistry A, 2017, 5, 5661-5679.	5.2	86

ZHU YONGFA

#	Article	IF	CITATIONS
163	An all-organic 0D/2D supramolecular porphyrin/g-C3N4 heterojunction assembled via ï€-ï€ interaction for efficient visible photocatalytic oxidation. Applied Catalysis B: Environmental, 2021, 291, 120059.	10.8	86
164	A honeycomb multilevel structure Bi2O3 with highly efficient catalytic activity driven by bias voltage and oxygen defect. Applied Catalysis B: Environmental, 2018, 237, 442-448.	10.8	84
165	Fluorination of ZnWO4Photocatalyst and Influence on the Degradation Mechanism for 4-Chlorophenol. Environmental Science & Technology, 2008, 42, 8516-8521.	4.6	83
166	Enhanced visible-light-induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles. Catalysis Today, 2019, 332, 227-235.	2.2	83
167	Separationâ€Free Polyaniline/TiO ₂ 3D Hydrogel with High Photocatalytic Activity. Advanced Materials Interfaces, 2016, 3, 1500502.	1.9	81
168	Separation free C3N4/SiO2 hybrid hydrogels as high active photocatalysts for TOC removal. Applied Catalysis B: Environmental, 2016, 194, 105-110.	10.8	81
169	Photocatalysis-self-Fenton system with high-fluent degradation and high mineralization ability. Applied Catalysis B: Environmental, 2020, 276, 119150.	10.8	78
170	The preparation and chemical structure of TiO2 film photocatalysts supported on stainless steel substrates via the sol–gel method. Journal of Materials Chemistry, 2001, 11, 1864-1868.	6.7	77
171	Influence of phase structure and morphology on the photocatalytic activity of bismuth molybdates. CrystEngComm, 2016, 18, 1976-1986.	1.3	75
172	The chemical states and properties of doped TiO2 film photocatalyst prepared using the Sol–Gel method with TiCl4 as a precursor. Applied Surface Science, 2000, 158, 32-37.	3.1	74
173	Highly-crystalline Triazine-PDI Polymer with an Enhanced Built-in Electric Field for Full-Spectrum Photocatalytic Phenol Mineralization. Applied Catalysis B: Environmental, 2021, 287, 119957.	10.8	73
174	High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods. Applied Catalysis B: Environmental, 2011, 110, 133-140.	10.8	71
175	Visible-light-driven NaTaO3â^'xNx catalyst prepared by a hydrothermal process. Materials Research Bulletin, 2008, 43, 864-872.	2.7	70
176	Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production. Catalysis Science and Technology, 2018, 8, 1686-1695.	2.1	70
177	Bi4O5Br2 nanosheets with vertical aligned facets for efficient visible-light-driven photodegradation of BPA. Applied Catalysis B: Environmental, 2021, 286, 119937.	10.8	69
178	Photodegradation of dye pollutants catalyzed by γ-Bi2MoO6 nanoplate under visible light irradiation. Applied Surface Science, 2009, 255, 8036-8040.	3.1	68
179	Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 261, 118233.	10.8	68
	Deste establishe estivity enhanced via surface by bridination 2020 2, 208,240		()

180 Photocatalytic activity enhanced via surface hybridization. , 2020, 2, 308-349.

68

#	Article	IF	CITATIONS
181	Zn3V2O7(OH)2(H2O)2 and Zn3V2O8 nanostructures: controlled fabrication and photocatalytic performance. Journal of Materials Chemistry, 2011, 21, 6313.	6.7	67
182	Probing π-π stacking modulation of g-C3N4/graphene heterojunctions and corresponding role of graphene on photocatalytic activity. Journal of Colloid and Interface Science, 2017, 508, 274-281.	5.0	67
183	K+-induced crystallization of polymeric carbon nitride to boost its photocatalytic activity for H2 evolution and hydrogenation of alkenes. Applied Catalysis B: Environmental, 2020, 268, 118457.	10.8	67
184	Research progress on methane conversion coupling photocatalysis and thermocatalysis. , 2021, 3, 519-540.		67
185	High Photocatalytic Oxygen Evolution via Strong Builtâ€In Electric Field Induced by High Crystallinity of Perylene Imide Supramolecule. Advanced Materials, 2022, 34, e2102354.	11.1	67
186	Engineering Low-Coordination Single-Atom Cobalt on Graphitic Carbon Nitride Catalyst for Hydrogen Evolution. ACS Catalysis, 2022, 12, 5517-5526.	5.5	67
187	A New Reaction to ZnO Nanoparticles. Chemistry Letters, 2004, 33, 770-771.	0.7	66
188	Synthesis of Hexagonal BaTa2O6Nanorods and Influence of Defects on the Photocatalytic Activity. Journal of Physical Chemistry B, 2006, 110, 25825-25832.	1.2	65
189	Size dependence of SiO2 particles enhanced glucose biosensor. Talanta, 2006, 68, 569-574.	2.9	65
190	Template-free synthesis of polymer-derived mesoporous SiOC/TiO2 and SiOC/N-doped TiO2 ceramic composites for application in the removal of organic dyes from contaminated water. Applied Catalysis B: Environmental, 2012, 115-116, 303-313.	10.8	63
191	Highly efficient photodegradation of RhB–MO mixture dye wastewater by Ag3PO4 dodecahedrons under acidic condition. Journal of Molecular Catalysis A, 2014, 393, 302-308.	4.8	63
192	Electron Donor–Acceptor Interface of TPPS/PDI Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Advanced Science, 2022, 9, e2201134.	5.6	62
193	Surface hybridization effect of C60 molecules on TiO2 and enhancement of the photocatalytic activity. Journal of Molecular Catalysis A, 2010, 331, 7-14.	4.8	61
194	Enhancement of mineralization ability of C3N4via a lower valence position by a tetracyanoquinodimethane organic semiconductor. Journal of Materials Chemistry A, 2014, 2, 11432-11438.	5.2	61
195	Density functional theory study on electronic and photocatalytic properties of orthorhombic AgInS2. Computational Materials Science, 2014, 91, 159-164.	1.4	61
196	Highly Efficient Organic Photocatalyst with Full Visible Light Spectrum through π–π Stacking of TCNQ–PTCDI. ACS Applied Materials & Interfaces, 2016, 8, 30225-30231.	4.0	60
197	Interfacial internal electric field and oxygen vacancies synergistically enhance photocatalytic performance of bismuth oxychloride. Journal of Hazardous Materials, 2021, 402, 123470.	6.5	60
198	Effects of Ta ⁵⁺ Substitution on the Structure and Photocatalytic Behavior of the Ca ₂ Nb ₂ O ₇ Photocatalyst. Journal of Physical Chemistry C, 2008, 112, 3126-3133.	1.5	59

#	Article	IF	CITATIONS
199	The reaction and poisoning mechanism of SO2 and perovskite LaCoO3 film model catalysts. Applied Catalysis A: General, 2001, 209, 71-77.	2.2	58
200	Large dipole moment induced efficient bismuth chromate photocatalysts for wide-spectrum driven water oxidation and complete mineralization of pollutants. National Science Review, 2020, 7, 652-659.	4.6	58
201	Perylene diimide anchored graphene 3D structure via ï€-ï€ interaction for enhanced photoelectrochemical degradation performances. Applied Catalysis B: Environmental, 2020, 272, 118897.	10.8	58
202	Title is missing!. Journal of Materials Science, 2000, 35, 5415-5420.	1.7	55
203	Dramatic visible activity in phenol degradation of TCNQ@TiO2 photocatalyst with core–shell structure. Applied Catalysis B: Environmental, 2014, 160-161, 44-50.	10.8	55
204	Separation-free TiO2-graphene hydrogel with 3D network structure for efficient photoelectrocatalytic mineralization. Applied Catalysis B: Environmental, 2017, 211, 106-113.	10.8	54
205	Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering. Journal of Materials Science and Technology, 2020, 49, 133-143.	5.6	54
206	Transitionâ€Metalâ€Based Cocatalysts for Photocatalytic Water Splitting. Small Structures, 2022, 3, .	6.9	53
207	Kinetically controlled seed-mediated growth of narrow dispersed silver nanoparticles up to 120 nm: secondary nucleation, size focusing, and Ostwald ripening. Physical Chemistry Chemical Physics, 2014, 16, 4236.	1.3	52
208	Steering Unit Cell Dipole and Internal Electric Field by Highly Dispersed Er atoms Embedded into NiO for Efficient CO ₂ Photoreduction. Advanced Functional Materials, 2022, 32, .	7.8	52
209	Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films, 2007, 515, 7127-7134.	0.8	51
210	Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases. Talanta, 2008, 76, 1058-1064.	2.9	51
211	Ultrathin TiO ₂ (B) Nanosheets as the Inductive Agent for Transfrering H ₂ O ₂ into Superoxide Radicals. ACS Applied Materials & Interfaces, 2017, 9, 15533-15540.	4.0	51
212	Influence of ZnWO4 nanorod aspect ratio on the photocatalytic activity. CrystEngComm, 2011, 13, 4695.	1.3	50
213	Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution. Journal of Molecular Catalysis A, 2011, 348, 100-105.	4.8	50
214	Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis. Science China Chemistry, 2018, 61, 1205-1213.	4.2	50
215	Mixed solvents: a key in solvothermal synthesis of KTaO3. Journal of Solid State Chemistry, 2004, 177, 2985-2990.	1.4	49
216	Enhancement of photoelectric catalytic activity of TiO2 film via Polyaniline hybridization. Journal of Solid State Chemistry, 2011, 184, 1433-1438.	1.4	49

#	Article	IF	CITATIONS
217	Water soluble graphitic carbon nitride with tunable fluorescence for boosting broad-response photocatalysis. Applied Catalysis B: Environmental, 2018, 225, 519-529.	10.8	49
218	A superior photocatalytic performance of a novel Bi ₂ SiO ₅ flower-like microsphere via a phase junction. Nanoscale, 2014, 6, 15222-15227.	2.8	48
219	Graphene oxide bound silica for solid-phase extraction of 14 polycyclic aromatic hydrocarbons in mainstream cigarette smoke. Journal of Chromatography A, 2015, 1375, 1-7.	1.8	48
220	High efficiency reduction of CO2 to CO and CH4 via photothermal synergistic catalysis of lead-free perovskite Cs3Sb2I9. Applied Catalysis B: Environmental, 2021, 294, 120236.	10.8	48
221	Electrochemical biosensing platforms using poly-cyclodextrin and carbon nanotube composite. Biosensors and Bioelectronics, 2010, 26, 295-298.	5.3	47
222	Correlation of crystal structures and electronic structures with visible light photocatalytic properties of NaBiO3. Chemical Physics Letters, 2013, 572, 101-105.	1.2	47
223	Self-assembled polymer phenylethnylcopper nanowires for photoelectrochemical and photocatalytic performance under visible light. Applied Catalysis B: Environmental, 2018, 226, 616-623.	10.8	47
224	Homogeneity of Supported Singleâ€Atom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, .	5.6	47
225	Effect of Jahnâ~Teller Distortion in La _{0.5} Sr _{0.5} MnO ₃ Cubes and Nanoparticles on the Catalytic Oxidation of CO and CH ₄ . Journal of Physical Chemistry C, 2007, 111, 16742-16749.	1.5	45
226	Synthesis and photoactivity enhancement of ZnWO4 photocatalysts doped with chlorine. CrystEngComm, 2012, 14, 8076.	1.3	45
227	Thermodynamic and dynamic dual regulation Bi ₂ O ₂ CO ₃ /Bi ₅ O ₇ I enabling high-flux photogenerated charge migration for enhanced visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2020, 8, 10252-10259.	5.2	45
228	Glucose biosensor based on nano-SiO2 and "unprotected―Pt nanoclusters. Biosensors and Bioelectronics, 2007, 22, 2989-2993.	5.3	44
229	Direct storage of holes in ultrathin Ni(OH) ₂ on Fe ₂ O ₃ photoelectrodes for integrated solar charging battery-type supercapacitors. Journal of Materials Chemistry A, 2018, 6, 21360-21367.	5.2	44
230	TiO ₂ @Perylene Diimide Fullâ€Spectrum Photocatalysts via Semi ore–Shell Structure. Small, 2019, 15, e1903933.	5.2	44
231	Synthesis of CdWO ₄ nanorods and investigation of the photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 212-218.	1.3	43
232	Interfaceâ€Engineered Ni(OH) ₂ /βâ€like FeOOH Electrocatalysts for Highly Efficient and Stable Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2017, 12, 2720-2726.	1.7	43
233	Create a strong internal electric-field on PDI photocatalysts for boosting phenols degradation via preferentially exposing π-conjugated planes up to 100%. Applied Catalysis B: Environmental, 2022, 300, 120762.	10.8	43
234	Solar water recycling of carbonaceous aerogel in open and colsed systems for seawater desalination and wastewater purification. Chemical Engineering Journal, 2022, 431, 133824.	6.6	43

#	Article	IF	CITATIONS
235	Comparative Studies on the Deactivation and Regeneration of TiO2 Nanoparticles in Three Photocatalytic Oxidation Systems: C7H16, SO2, and C7H16–SO2. Journal of Solid State Chemistry, 2002, 166, 395-399.	1.4	42
236	Large-scale Synthesis of Luminescent Y2O3:Eu Nanobelts. Chemistry Letters, 2003, 32, 862-863.	0.7	42
237	A high performance glucose biosensor enhanced via nanosized SiO2. Analytica Chimica Acta, 2005, 554, 92-97.	2.6	42
238	The high activity and stability of La0.5Ba0.5MnO3 nanocubes in the oxidation of CO and CH4. Applied Catalysis B: Environmental, 2010, 96, 267-275.	10.8	41
239	Enhanced photoelectric catalytic degradation of methylene blue via TiO2 nanotube arrays hybridized with graphite-like carbon. Journal of Molecular Catalysis A, 2011, 349, 13-19.	4.8	41
240	Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots. Chinese Journal of Catalysis, 2020, 41, 474-484.	6.9	41
241	Graphitic Carbon Nitride for Photoelectrochemical Detection of Environmental Pollutants. ACS ES&T Engineering, 2022, 2, 140-157.	3.7	41
242	Synthesis of CdMoO4microspheres by self-assembly and photocatalytic performances. CrystEngComm, 2012, 14, 1128-1134.	1.3	40
243	A newly discovered BiF3 photocatalyst with a high positive valence band. Journal of Molecular Catalysis A, 2015, 401, 35-40.	4.8	40
244	Title is missing!. Journal of Materials Science, 2003, 38, 3973-3978.	1.7	39
245	Photocatalytic and photoelectrochemical properties of in situ carbon hybridized BiPO4 films. Applied Catalysis A: General, 2012, 435-436, 93-98.	2.2	39
246	Charge storage performances of micro-supercapacitor predominated by two-dimensional (2D) crystal structure. Nano Energy, 2016, 27, 58-67.	8.2	39
247	Determination of NH3 gas by combination of nanosized LaCoO3 converter with chemiluminescence detector. Talanta, 2003, 61, 157-164.	2.9	38
248	Solvothermal Synthesis of Sodium and Potassium Tantalate Perovskite Nanocubes. Chemistry Letters, 2004, 33, 900-901.	0.7	38
249	Enhanced visible-light photocatalysis via back-electron transfer from palladium quantum dots to perylene diimide. Applied Catalysis B: Environmental, 2018, 230, 49-57.	10.8	38
250	In2O3/boron doped g-C3N4 heterojunction catalysts with remarkably enhanced visible-light photocatalytic efficiencies. Applied Surface Science, 2020, 504, 144241.	3.1	38
251	Low temperature synthesis and magnetism of La0.75Ca0.25MnO3 nanoparticles. Journal of Physics and Chemistry of Solids, 2000, 61, 1407-1413.	1.9	37
252	The interface diffusion and reaction between Cr layer and diamond particle during metallization. Applied Surface Science, 2001, 171, 143-150.	3.1	37

ZHU YONGFA

#	Article	IF	CITATIONS
253	Ultrathin perylene imide nanosheet with fast charge transfer enhances photocatalytic performance. Applied Catalysis B: Environmental, 2021, 298, 120585.	10.8	37
254	Two-step synthesis of a novel visible-light-driven K2Ta2O6â^'xNx catalyst for the pollutant decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193, 33-41.	2.0	36
255	Poisoning mechanism of perovskite LaCoO3 catalyst by organophosphorous gas. Applied Catalysis B: Environmental, 2005, 58, 61-68.	10.8	35
256	Enhanced photocatalytic activity of PTCDI-C60 via π–π interaction. Applied Catalysis B: Environmental, 2018, 238, 302-308.	10.8	35
257	Photoelectrochemical properties of thin Bi2WO6 films. Thin Solid Films, 2007, 515, 4753-4757.	0.8	34
258	Enhancement of the degradation ability for organic pollutants via the synergistic effect of photoelectrocatalysis on a self-assembled perylene diimide (SA-PDI) thin film. Science Bulletin, 2019, 64, 896-903.	4.3	34
259	Cationâ€Deficiencyâ€Dependent CO ₂ Electroreduction over Copperâ€Based Ruddlesden–Popper Perovskite Oxides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
260	Effects of Nanostructure on Catalytic Degradation of Ethanol on SrCO3 Catalysts. Journal of Physical Chemistry B, 2005, 109, 5118-5123.	1.2	32
261	Deactivating harmful marine microorganisms through photoelectrocatalysis by GO/ZnWO4 electrodes. Chemical Engineering Journal, 2017, 330, 635-643.	6.6	32
262	Accurate guided alternating atomic layer enhance internal electric field to steering photogenerated charge separation for enhance photocatalytic activity. Applied Catalysis B: Environmental, 2021, 298, 120536.	10.8	32
263	Controllable synthesis of Fe5(PO4)4(OH)3·2H2O as a highly efficient heterogeneous Fenton-like catalyst. CrystEngComm, 2011, 13, 6688.	1.3	31
264	Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. National Science Review, 2021, 8, nwaa155.	4.6	31
265	Preparation and Photoelectrochemical Properties of Bi2MoO6 Films. Acta Physico-chimica Sinica, 2007, 23, 1671-1676.	0.6	30
266	Enhanced cyclability of CdS/TiO2 photocatalyst by stable interface structure. Superlattices and Microstructures, 2012, 51, 799-808.	1.4	30
267	Improving the photocatalytic activity of benzyl alcohol oxidation by Z-scheme SnS/g-C ₃ N ₄ . New Journal of Chemistry, 2021, 45, 6611-6617.	1.4	30
268	Synthesis of hollow Mn3O4-in-Co3O4 magnetic microspheres and its chemiluminescence and catalytic properties. Catalysis Communications, 2008, 9, 1119-1124.	1.6	29
269	Significant photocatalytic enhancement in methylene blue degradation of Bi2WO6 photocatalysts via graphene hybridization. Journal of Advanced Ceramics, 2012, 1, 72-78.	8.9	29
270	Synthesis and photoelectrochemical properties of thin bismuth molybdates film with various crystal phases. Thin Solid Films, 2009, 517, 5813-5818.	0.8	28

ZHU YONGFA

#	Article	lF	CITATIONS
271	An anion exchange strategy for construction of a novel Bi ₂ SiO ₅ /Bi ₂ MoO ₆ heterostructure with enhanced photocatalytic performance. Catalysis Science and Technology, 2018, 8, 3278-3285.	2.1	28
272	Carbon nitride nested tubes with graphene as a dual electron mediator in Z-scheme photocatalytic deoxynivalenol degradation. Catalysis Science and Technology, 2019, 9, 1680-1690.	2.1	28
273	Determination of four tobacco-specific nitrosamines in mainstream cigarette smoke by gas chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 4086-4092.	0.7	27
274	The effect of dopants on the electronic structure of SnO2 thin film. Sensors and Actuators B: Chemical, 2000, 66, 219-221.	4.0	26
275	Study on the interaction between Ag and tris(8-hydroxyquinoline) aluminum using x-ray photoelectron spectroscopy. Surface and Interface Analysis, 2001, 32, 70-73.	0.8	26
276	Auger chemical shift analysis and its applications to the identification of interface species in thin films. Applied Surface Science, 1998, 133, 213-220.	3.1	25
277	A novel method for the synthesis of nano-sized BaAl2O4 with thermal stability. Journal of Crystal Growth, 2003, 255, 317-323.	0.7	25
278	CO ₂ Electroreduction to Formate at a Partial Current Density up to 590ÂmA mg ^{â^'1} via Micrometer‣cale Lateral Structuring of Bismuth Nanosheets. Small, 2021, 17, e2100602.	5.2	25
279	Preparation of nanosized La2CuO4 perovskite oxide using an amorphous heteronuclear complex as a precursor at low-temperature. Journal of Alloys and Compounds, 2000, 311, 16-21.	2.8	24
280	Hydrothermal Synthesis of Fine MoS2Crystals from Na2MoO4and KSCN. Chemistry Letters, 2003, 32, 768-769.	0.7	24
281	New insights into the relationship between photocatalytic activity and TiO ₂ –CR composites. RSC Advances, 2015, 5, 29201-29208.	1.7	24
282	Formation and performances of porous InVO4 films. Journal of Solid State Chemistry, 2006, 179, 873-882.	1.4	22
283	The enhanced photoactivity of nanosized Bi2WO6 catalyst for the degradation of 4-chlorophenol. Materials Research Bulletin, 2008, 43, 2617-2625.	2.7	22
284	Photocatalytic production of H2O2 from water and dioxygen only under visible light using organic polymers: Systematic study of the effects of heteroatoms. Applied Catalysis B: Environmental, 2021, 299, 120666.	10.8	22
285	Oxygen vacancy induced structure change and interface reaction in HfO2 films on native SiO2/Si substrate. Applied Surface Science, 2016, 390, 260-265.	3.1	21
286	Bottom-up approach to quasi-monolayer black phosphorus advancing photocatalytic H2 evolution. Chemical Engineering Journal, 2021, 421, 127841.	6.6	21
287	Unravelling the electrocatalytic activity of bismuth nanosheets towards carbon dioxide reduction: Edge plane versus basal plane. Applied Catalysis B: Environmental, 2021, 299, 120693.	10.8	21
288	Electrochemical performance of pre-lithiated graphite as negative electrode in lithium-ion capacitors. Russian Journal of Electrochemistry, 2014, 50, 1050-1057.	0.3	20

#	Article	IF	CITATIONS
289	TiO2/Al(H2PO4)3 composite film as separation-free and washing-resistance photocatalyst. Applied Catalysis B: Environmental, 2017, 204, 43-48.	10.8	20
290	Study on the Poisoning Mechanism of Sulfur Dioxide for Perovskite La0.9Sr0.1CoO3 Model Catalysts. Catalysis Letters, 2002, 82, 199-204.	1.4	19
291	Controlled synthesis of 1D ZnO nanostructures via hydrothermal process. Materials Research Bulletin, 2014, 49, 665-671.	2.7	19
292	Controlled Synthesis of Higher Interfacial Electron Transfer Graphiteâ€Like Carbon Nitride/Perylenetetracarboxylic Diimide Heterogeneous for Enhanced Photocatalytic Activity. Solar Rrl, 2021, 5, 2000453.	3.1	19
293	High-efficiency degradation of quinclorac via peroxymonosulfate activated by N-doped CoFe2O4/Fe0@CEDTA hybrid catalyst. Journal of Industrial and Engineering Chemistry, 2021, 102, 177-185.	2.9	19
294	High photocatalytic activity of oxychloride CaBiO2Cl under visible light irradiation. CrystEngComm, 2012, 14, 6257.	1.3	18
295	Investigations on the Phase Transition between CdV ₂ O ₆ and Cd ₂ V ₂ O ₇ and Their Photocatalytic Performances. European Journal of Inorganic Chemistry, 2013, 2013, 3070-3075.	1.0	18
296	Visibleâ€Lightâ€Promoted Efficient Aerobic Dehydrogenation of Nâ€Heterocycles by a Tiny Organic Semiconductor Under Ambient Conditions. European Journal of Organic Chemistry, 2020, 2020, 1956-1960.	1.2	18
297	Noble Metal-Free 2D 1T-MoS ₂ Edge Sites Boosting Selective Hydrogenation of Maleic Anhydride. ACS Catalysis, 2022, 12, 8986-8994.	5.5	18
298	Carbon nanotubes-templated assembly of LaCoO3 nanowires at low temperatures and its excellent catalytic properties for CO oxidation. Catalysis Communications, 2007, 8, 1748-1754.	1.6	17
299	Destructive adsorption of carbon tetrachloride on nanometer titanium dioxide. Physical Chemistry Chemical Physics, 2004, 6, 985.	1.3	16
300	Micelle-assisted hydrothermal synthesis of the uniform Co3O4 nanorods and its chemoluminescence properties of CO oxidation. Journal of Non-Crystalline Solids, 2009, 355, 2375-2380.	1.5	16
301	Application of AES line shape analysis for the identification of interface species during the metallization of diamond particles. Surface and Interface Analysis, 1999, 28, 254-257.	0.8	15
302	Interface diffusion and reaction between TiO2 film photocatalyst and aluminium alloy substrate. Surface and Interface Analysis, 2001, 32, 218-223.	0.8	15
303	Preparation of nano-sized SrAl2O4 using an amorphous hetero-nucleus complex as a precursor. Journal of Alloys and Compounds, 2004, 370, 276-280.	2.8	15
304	Enhancement of visible light photocatalytic performances of Bi2MoS2O4 nanoplates. Catalysis Science and Technology, 2013, 3, 1757.	2.1	15
305	Comparison of the interfacial reactions and properties between Ag/Ti3AlC2 and Ag/Ti3SiC2 electrical contact materials. Journal of Alloys and Compounds, 2021, 857, 157588.	2.8	15
306	The construction of a wide-spectrum-responsive and high-activity photocatalyst, Bi ₂₅ CoO ₄₀ , <i>via</i> the creation of large external dipoles. Journal of Materials Chemistry A, 2021, 9, 3616-3627.	5.2	15

#	Article	IF	CITATIONS
307	Monodisperse Ni-clusters anchored on carbon nitride for efficient photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2022, 43, 536-545.	6.9	15
308	Preparation and conducting performance of LaNiO3 thin film on Si substrate. Thin Solid Films, 2005, 471, 48-52.	0.8	14
309	A CL Mode Detector for Rapid Catalyst Selection and Environmental Detection Fabricated by Perovskite Nanoparticles. Environmental Science & amp; Technology, 2008, 42, 3886-3892.	4.6	14
310	Correlation Cataluminescence (CTL) Property with Reactivity of Hydrothermally Synthesized La _{0.8} Sr _{0.2} MnO ₃ Cubes and CTL as a Rapid Mode of Screening Catalyst. Journal of Physical Chemistry C, 2009, 113, 3089-3095.	1.5	14
311	Photochemical synthesis of Ni-Ni(OH)2 synergistic cocatalysts hybridized with CdS nanorods for efficient photocatalytic hydrogen evolution. FlatChem, 2021, 26, 100232.	2.8	14
312	Diffusing behavior of MoO3 on Al2O3 and SiO2 thin films. Surface Science, 2000, 470, 121-130.	0.8	13
313	Preparation of nanosized LaCo Mn1â^'O3 perovskite oxide using amorphous heteronuclear complex as a precursor. Journal of Alloys and Compounds, 2002, 337, 282-288.	2.8	13
314	An Easy Method to Prepare Nanowire. Chemistry Letters, 2003, 32, 594-595.	0.7	13
315	Understanding the contribution of hydroxyl to the energy band of a semiconductor: Bi ₂ O(OH) ₂ SO ₄ vs. Bi ₆ S ₂ O ₁₅ . Dalton Transactions, 2016, 45, 6866-6877.	1.6	13
316	Preparation of nanosized perovskite LaNiO3 powder via amorphous heteronuclear complex precursor. Journal of Materials Science, 2003, 38, 1939-1943.	1.7	12
317	Electrochemical performance of lithium ion capacitors with different types of negative electrodes. Russian Journal of Electrochemistry, 2014, 50, 594-598.	0.3	12
318	Residual iodine on in-situ transformed bismuth nanosheets induced activity difference in CO2 electroreduction. Journal of CO2 Utilization, 2022, 55, 101802.	3.3	12
319	Title is missing!. Journal of Materials Science, 1999, 34, 4969-4973.	1.7	11
320	Formation of hollow NiO single crystals and Ag/NiO flowers. Materials Research Bulletin, 2008, 43, 3562-3569.	2.7	11
321	Highly Dispersed and Small‧ized Nickel(II) Hydroxide Coâ€Catalyst Prepared by Photodeposition for Hydrogen Production. Chemistry - an Asian Journal, 2019, 14, 4193-4200.	1.7	11
322	Influence of PEG additive and precursor concentration on the preparation of LaCoO3 film with perovskite structure. Thin Solid Films, 2001, 388, 160-164.	0.8	10
323	Interface diffusion and reaction between Ti layer and Si3N4/Si substrate. Surface and Interface Analysis, 2001, 32, 296-300.	0.8	10
324	Preparation of LaSrCuO4 nanowires by carbon nanotubes and their catalytic and chemiluminescence properties for CO oxidation. Applied Catalysis A: General, 2007, 328, 156-162.	2.2	10

#	Article	IF	CITATIONS
325	Electronic structures and effective masses of photogenerated carriers of CaZrTi2O7 photocatalyst: First-principles calculations. Solid State Communications, 2012, 152, 1650-1654.	0.9	10
326	Morphology-dependent photoelectrochemical properties of multi-scale layered Bi(C ₂ O ₄)OH. RSC Advances, 2016, 6, 23537-23549.	1.7	10
327	Ultrathin triphenylamine–perylene diimide polymer with D–A structure for photocatalytic oxidation of <i>N</i> â€heterocycles using ambient air. EcoMat, 2022, 4, .	6.8	10
328	Desorption energy of Hâ^' from heated saline hydrides and their work function effective for thermal electron emission. Thermochimica Acta, 1997, 299, 81-85.	1.2	9
329	Activation energies for the desorption of H 2 , H â^' and electron from saline hydrides heated in vacuum. Thermochimica Acta, 2001, 371, 155-161.	1.2	9
330	Preparation of nanosized La1â^'xSrxCoO3 via La1â^'xSrxCo(DTPA)·6H2O amorphous complex precursor. Journal of Alloys and Compounds, 2003, 352, 134-139.	2.8	9
331	Crystal structure stability and catalytic activity of magnetoplumbite (MP) catalyst doped with Mn and Mg. Journal of Non-Crystalline Solids, 2007, 353, 4806-4812.	1.5	9
332	Effect of the flowing gases of steam and CO2 on the texture and catalytic activity for methane combustion of MgO powders. Microporous and Mesoporous Materials, 2008, 111, 620-626.	2.2	9
333	Photocatalytic activity enhancement of LaPO ₄ via surface oxygen vacancies. RSC Advances, 2015, 5, 56711-56716.	1.7	9
334	In situ hydrothermal fabrication of a MnO ₂ @CoMoO ₄ @Ni nanohybrid electrode and ultrahigh energy density of ASCs. RSC Advances, 2016, 6, 46508-46515.	1.7	9
335	Thermal desorption of H2, Hâ^' and electron by temperature-programmed heating of saline hydrides in vacuum. Thermochimica Acta, 2000, 344, 119-125.	1.2	8
336	A study of the oxygen adsorption and initial oxidation on polycrystalline zinc by AES line shapes and EELS. Surface Science, 1992, 275, 357-364.	0.8	7
337	Platinum Nanowire Array Electrochemical Sensor: Fabrication and Characterization. Journal of Nanoscience and Nanotechnology, 2009, 9, 2437-2441.	0.9	7
338	NOVEL HIERARCHICAL NANORODS OF SILICON-DOPED Bi ₂ cfont>O ₂ cfont>CO csub>3 AND ITS PHOTOCATALYTIC ACTIVITY. Nano, 2014, 09, 1450094.	0.5	7
339	Catalytic activity of porous carbon nitride regulated by polyoxometalates under visible light. RSC Advances, 2020, 10, 8255-8260.	1.7	7
340	General applicability of our empirical formulae expressing the threshold temperature range for dissociative positive ionization of halide molecules on heated metal surfaces. Applied Surface Science, 1997, 108, 113-119.	3.1	6
341	Effective work functions of polycrystalline refractory metals heated for thermal positive-ionic and electronic emissions. Thermochimica Acta, 1997, 299, 67-80.	1.2	6
342	Optimum temperature range for positive ion production from metal halide molecules incident upon heated metal catalysts. Applied Surface Science, 1999, 144-145, 404-408.	3.1	6

#	Article	IF	CITATIONS
343	Chemical structure and interface reaction of LaCoO3/Si thin-film system. Surface and Interface Analysis, 2001, 32, 310-313.	0.8	6
344	Study of interface diffusion and reaction between Zr3N4 and stainless steel. Surface and Interface Analysis, 2003, 35, 814-817.	0.8	6
345	Electron migration behavior of Au/Cu multilayer films on Si substrates under UV radiation. Physical Chemistry Chemical Physics, 2015, 17, 5057-5062.	1.3	6
346	CN/iodine-doped CN homojunction powder catalysts with excellent visible-light photocatalytic properties. Powder Technology, 2020, 373, 488-496.	2.1	6
347	Steering Electron–Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angewandte Chemie, 2021, 133, 8317-8323.	1.6	6
348	Sticking probability of metal halide molecules incident upon refractory metal surfaces heated in high vacua. Applied Surface Science, 1997, 119, 341-345.	3.1	5
349	Ultrasensitive and reproducible surface-enhanced Raman scattering detection via an optimized adsorption process and filter-based substrate. Analytical Methods, 2014, 6, 4130.	1.3	5
350	Photo-sensitization of BiOCl by CuInS2 Surface Layer for Photoelectrochemical Cathode. Catalysis Letters, 2020, 150, 1337-1345.	1.4	5
351	Accumulation and migration of alkali halide molecules incident upon metal surfaces heated in high vacua. Studies in Surface Science and Catalysis, 1997, , 151-160.	1.5	4
352	Effective work functions for thermal positive-ionic and electronic emissions from tantalum heated in a high vacuum. Vacuum, 1997, 48, 629-631.	1.6	4
353	Positive-ionic and neutral-molecular desorptions by temperature-programmed heating of a thin film of lithium bromide. Thin Solid Films, 1999, 339, 225-232.	0.8	4
354	Interface diffusion and chemical reaction on the interface of a PZT film/Si(III) sample during annealing treatment in N2 and vacuum. Surface and Interface Analysis, 1999, 27, 972-980.	0.8	4
355	Activation energies for thermal ionic and neutral desorptions from thin films of lithium halides. Thermochimica Acta, 2000, 344, 103-117.	1.2	4
356	Thermal positive-ionic and electronic emissions from iridium heated in vacua. IEEE Transactions on Plasma Science, 2001, 29, 781-784.	0.6	4
357	Study of the interface action between LaCoO3 layer and Al2O3 substrate. Surface and Interface Analysis, 2001, 32, 183-188.	0.8	4
358	Study of the diffusion behaviour of MoO3 and ZnO on oxide thin films by SR-TXRF. Surface and Interface Analysis, 2001, 32, 301-305.	0.8	4
359	Preparation and conducting performance of LaNiO3/Ag film and its interface reaction. Applied Surface Science, 2006, 252, 7461-7468.	3.1	4
360	Electrochemical properties of novel titania nanostructures. Nanotechnology, 2015, 26, 225603.	1.3	4

#	Article	IF	CITATIONS
361	p-Type Cu ₂ O as an effective interlayer between CdS and NiO _x cocatalysts to promote photocatalytic hydrogen production. New Journal of Chemistry, 2020, 44, 17719-17723.	1.4	4
362	Activation energies for the desorption of neutral molecules and positive ions from alkali-halide layers heated on a metal surface. Thermochimica Acta, 1997, 299, 59-65.	1.2	3
363	Polymerization of chlorofluorocarbon-22 and acetonitrile. Journal of Applied Polymer Science, 2001, 81, 116-120.	1.3	3
364	Effect of the morphology on thermal stability of the Ba-Ce-Mn-Al-O oxides synthesized in a reverse microemulsion. Journal of Alloys and Compounds, 2008, 461, 516-520.	2.8	3
365	Synthesis and Performance Enhancement for Bi2WO6 as High-Activity Visible-Light-Driven Photocatalysts. Nanostructure Science and Technology, 2016, , 359-389.	0.1	3
366	DyVO4/boron-doped g-C3N4 composite photocatalytic materials with enhanced visible-light purification properties. Diamond and Related Materials, 2019, 97, 107462.	1.8	3
367	Visible-light-promoted aerobic oxidative hydroxylation of arylboronic acids in water by hydrophilic organic semiconductor. Tetrahedron Letters, 2020, 61, 152010.	0.7	3
368	Temperature-programmed desorption study of the surface states during positiveionic and neutral-molecular desorption from a lithium halide film on platinum. Studies in Surface Science and Catalysis, 1997, 112, 377-386.	1.5	2
369	AES study on the interface diffusion and reaction between Cr layer and Si3N4/Si substrate. Surface and Interface Analysis, 2002, 33, 496-499.	0.8	2
370	Syntheses of La1-xBaxMn2Al10O19Catalysts (x= 0, 0.05) in a Novel Microemulsion of Water/2-Propanol/1-Butanol and Their High Activities in Methane Combustion. Journal of Physical Chemistry C, 2007, 111, 10941-10947.	1.5	2
371	Accessing the applicability of the MBE approach for constructing potential energy surfaces of nitrogen clusters. Chemical Physics, 2021, 549, 111272.	0.9	1
372	Interfacial Structure of Ta2O5/Si Film and Photoactivity. Acta Physico-chimica Sinica, 2007, 23, 625-629.	0.6	0
373	Porous nanoballs formed through an in situ generated "framework―template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312, 39-46.	2.3	0
374	Crystal Structure of La1â^'xCexCoO3+Î' (x â‰ 0 .1) nanoparticles at different temperatures. , 2008, , .		0
375	The formation of heterointerface defects in Au/Cu films on Si substrates under direct current in a vacuum ultraviolet environment. Physical Chemistry Chemical Physics, 2016, 18, 4019-4025.	1.3	0
376	Modulating Directional Electron Transfer on Boron Nitride Nanosheets by Oxygen Modification for Effectively Molecule Activation. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	0
377	Cationâ€Deficiencyâ€Dependent CO2 Electroreduction over Copperâ€Based Ruddlesdenâ€Popper Perovskite Oxides. Angewandte Chemie, 2022, 134, e202111670.	1.6	0