Ralph D Lorenz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1690686/publications.pdf

Version: 2024-02-01

475 papers

17,220 citations

65 h-index 30087 103 g-index

523 all docs 523 docs citations

523 times ranked 4799 citing authors

#	Article	IF	Citations
1	Exploration of Enceladus and Titan: investigating ocean worlds' evolution and habitability in the Saturn system. Experimental Astronomy, 2022, 54, 877-910.	3.7	3
2	Gravitational atmospheric tides as a probe of Titan's interior: Application to Dragonfly. Astronomy and Astrophysics, 2022, 658, A108.	5.1	2
3	Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and habitability: titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON). Experimental Astronomy, 2022, 54, 911-973.	3.7	5
4	Mission Incredible: A Titan Sample Return Using In-Situ Propellants. , 2022, , .		0
5	The Dirty Secrets of Planetary Exploration: Lessons from Interactions with Regolith. , 2022, , .		O
6	The InSight-HP3 mole on Mars: Lessons learned from attempts to penetrate to depth in the Martian soil. Advances in Space Research, 2022, 69, 3140-3163.	2.6	24
7	In situ recording of Mars soundscape. Nature, 2022, 605, 653-658.	27.8	30
8	Turbulence for extraterrestrial aviation: Gust specification for Dragonfly's powered flights. Planetary and Space Science, 2022, 214, 105459.	1.7	4
9	Titan's surface bearing strength: Contact force models for the Dragonfly rotorcraft lander. Planetary and Space Science, 2022, 214, 105449.	1.7	1
10	Investigation of magnetic field signals during vortex-induced pressure drops at InSight. Planetary and Space Science, 2022, 217, 105487.	1.7	3
11	Sand Transport on Titan: A Sticky Problem. Geophysical Research Letters, 2022, 49, .	4.0	3
12	Descent Dynamics of the Pioneer Venus Large Probe. , 2022, , .		0
13	The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .	10.3	47
14	Revealing the Mysteries of Venus: The DAVINCI Mission. Planetary Science Journal, 2022, 3, 117.	3 . 6	62
15	Correction: Descent Dynamics of the Pioneer Venus Large Probe. , 2022, , .		1
16	Near-surface structure of a large linear dune and an associated crossing dune of the northern Namib Sand Sea from Ground Penetrating Radar: Implications for the history of large linear dunes on Earth and Titan. Aeolian Research, 2022, 57, 100813.	2.7	3
17	Companion guide to the marsquake catalog from InSight, Sols 0–478: Data content and non-seismic events. Physics of the Earth and Planetary Interiors, 2021, 310, 106597.	1.9	64
18	The whirlwinds of Elysium: A catalog and meteorological characteristics of "dust devil―vortices observed by InSight on Mars. Icarus, 2021, 355, 114119.	2.5	20

#	Article	IF	CITATIONS
19	Large-Eddy Simulation of Titan's near-surface atmosphere: Convective turbulence and flow over dunes with application to Huygens and Dragonfly. Icarus, 2021, 357, 114229.	2.5	6
20	Scaling sediment mobilization beneath rotorcraft for Titan and Mars. Aeolian Research, 2021, 48, 100653.	2.7	7
21	The low electrical conductivity of Titan's lower atmosphere. lcarus, 2021, 354, 114092.	2.5	4
22	Dust devil winds: Assessing dry convective vortex intensity limits at planetary surfaces. Icarus, 2021, 354, 114062.	2.5	8
23	Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 2: Local Meteorology, Transport Dynamics, and Model Analysis. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006514.	3.6	19
24	Experimental Wind Characterization with the SuperCam Microphone under a Simulated martian Atmosphere. Icarus, 2021, 354, 114060.	2.5	12
25	Aeroshell Contamination Venting on Long-Duration Planetary Missions. Journal of Spacecraft and Rockets, 2021, 58, 240-243.	1.9	1
26	Selection and Characteristics of the Dragonfly Landing Site near Selk Crater, Titan. Planetary Science Journal, 2021, 2, 24.	3.6	36
27	Constraining Martian Regolith and Vortex Parameters From Combined Seismic and Meteorological Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006410.	3.6	16
28	The Science Case for a Titan Flagship-class Orbiter with Probes. , 2021, 53, .		0
29	Toward More Realistic Simulation and Prediction of Dust Storms on Mars. , 2021, 53, .		3
30	Modeling transmission windows in Titan's lower troposphere: Implications for infrared spectrometers aboard future aerial and surface missions. Icarus, 2021, 357, 114228.	2.5	3
31	The Challenging Depths of Titan's Seas. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006786.	3.6	2
32	The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Science Reviews, 2021, 217, 1.	8.1	131
33	An engineering model of Titan surface winds for Dragonfly landed operations. Advances in Space Research, 2021, 67, 2219-2230.	2.6	7
34	Physical-based scattering model for Titan: Integrating Cassini microwave data (active and passive). Icarus, 2021, 359, 114319.	2.5	1
35	Evolution of the Huygens Probe Spin During Parachute Descent. Journal of Spacecraft and Rockets, 2021, 58, 609-618.	1.9	4
36	Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 1: Multiâ€Instrument Observations, Analysis, and Implications. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006757.	3.6	23

#	Article	IF	Citations
37	Observation of Cassini's Entry into Saturn: No Detection, and Lessons Learned. Research Notes of the AAS, 2021, 5, 133.	0.7	0
38	Titan: Earth-like on the Outside, Ocean World on the Inside. Planetary Science Journal, 2021, 2, 112.	3.6	21
39	Prediction of aerodynamically-triggered condensation: Application to the Dragonfly rotorcraft in Titan's atmosphere. Aerospace Science and Technology, 2021, 114, 106738.	4.8	5
40	Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander. Planetary Science Journal, 2021, 2, 130.	3.6	80
41	Near Surface Properties of Martian Regolith Derived From InSight HP ³ â€RAD Temperature Observations During Phobos Transits. Geophysical Research Letters, 2021, 48, e2021GL093542.	4.0	13
42	First Mars year of observations with the InSight solar arrays: Winds, dust devil shadows, and dust accumulation. Icarus, 2021, 364, 114468.	2.5	15
43	Wind and surface roughness considerations for seismic instrumentation on a relocatable lander for Titan. Planetary and Space Science, 2021, 206, 105320.	1.7	8
44	Lander and rover histories of dust accumulation on and removal from solar arrays on Mars. Planetary and Space Science, 2021, 207, 105337.	1.7	23
45	A Study of Daytime Convective Vortices and Turbulence in the Martian Planetary Boundary Layer Based on Halfâ€aâ€Year of InSight Atmospheric Measurements and Largeâ€Eddy Simulations. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	45
46	The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Space Science Reviews, 2021, 217, 4.	8.1	160
47	Search for Infrasound Signals in InSight Data Using Coupled Pressure/Ground Deformation Methods. Bulletin of the Seismological Society of America, 2021, 111, 3055-3064.	2.3	8
48	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	4.4	13
49	Paleoclimate Evolution on Titan After Episodic Massive Methane Outgassing Simulated by a Global Climate Model. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	2
50	How far is far enough? Requirements derivation for planetary mobility systems. Advances in Space Research, 2020, 65, 1383-1401.	2.6	9
51	Influence of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the local atmospheric environment. Planetary and Space Science, 2020, 193, 105075.	1.7	17
52	Martian Ripples Making a Splash. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006658.	3.6	14
53	Titan Turtle: NIAC Phase II Design for a Submersible Vehicle for Titan Exploration. , 2020, , .		0
54	Geophysical Observations of Phobos Transits by InSight. Geophysical Research Letters, 2020, 47, e2020GL089099.	4.0	10

#	Article	IF	CITATIONS
55	Key Technologies and Instrumentation for Subsurface Exploration of Ocean Worlds. Space Science Reviews, 2020, 216, 1.	8.1	18
56	Dust devils on Mars. Physics Today, 2020, 73, 62-63.	0.3	1
57	Prospects for Detecting Volcanic Events with Microwave Radiometry. Remote Sensing, 2020, 12, 2544.	4.0	1
58	Scientific Observations With the InSight Solar Arrays: Dust, Clouds, and Eclipses on Mars. Earth and Space Science, 2020, 7, e2019EA000992.	2.6	24
59	Triboelectric Charging and Brownout Hazard Evaluation for a Planetary Rotorcraft. , 2020, , .		5
60	The root of anomalously specular reflections from solid surfaces on Saturn's moon Titan. Nature Communications, 2020, 11, 2829.	12.8	6
61	Dust Devils on Titan. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006238.	3.6	3
62	Joint Europa Mission (JEM): a multi-scale study of Europa to characterize its habitability and search for extant life. Planetary and Space Science, 2020, 193, 104960.	1.7	15
63	Schumann resonance on Titan: A critical Re-assessment. Icarus, 2020, 351, 113942.	2.5	9
64	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	12.9	161
65	Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 2020, 13, 213-220.	12.9	207
66	Titan's impact crater population after Cassini. Icarus, 2020, 344, 113664.	2.5	20
67	Onâ€Deck Seismology: Lessons from InSight for Future Planetary Seismology. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006353.	3.6	25
68	Monitoring of Dust Devil Tracks Around the InSight Landing Site, Mars, and Comparison With In Situ Atmospheric Data. Geophysical Research Letters, 2020, 47, e2020GL087234.	4.0	30
69	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	12.9	274
70	A Transit Lightcurve of Deimos, Observed with the InSight Solar Arrays. Research Notes of the AAS, 2020, 4, 57.	0.7	1
71	Maunder's Work on Planetary Habitability in 1913: Early Use of the term "Habitable Zone―and a "Dr Equation―Calculation. Research Notes of the AAS, 2020, 4, 79.	ake 0.7	5
72	Seismology on Titan: A seismic signal and noise budget in preparation for Dragonfly. , 2020, , .		2

#	Article	IF	CITATIONS
73	A Thermal Inertia Map of Titan. Journal of Geophysical Research E: Planets, 2019, 124, 1728-1742.	3.6	11
74	A model intercomparison of Titan's climate and low-latitude environment. Icarus, 2019, 333, 113-126.	2.5	36
75	Constraints on Venus Lightning From Akatsuki's First 3 Years in Orbit. Geophysical Research Letters, 2019, 46, 7955-7961.	4.0	9
76	Application of Pneumatics in Delivering Samples to Instruments on Planetary Missions. , 2019, , .		5
77	Experimental investigation of surface adhesion of Titan analog materials: Mitigation by dust-repellent coatings. Planetary and Space Science, 2019, 179, 104721.	1.7	8
78	A theory of angel hair: Analytic prediction of frictional heating of particulates in pneumatic transport. Powder Technology, 2019, 355, 264-267.	4.2	5
79	Hydrogen sensing in Titan's atmosphere: Motivations and techniques. Planetary and Space Science, 2019, 174, 1-7.	1.7	5
80	Calculating risk and payoff in planetary exploration and life detection missions. Advances in Space Research, 2019, 64, 944-956.	2.6	16
81	A Bayesian approach to biosignature detection on ocean worlds. Nature Astronomy, 2019, 3, 466-467.	10.1	10
82	Large-scale, sub-tropical cloud activity near Titan's 1995 equinox. Icarus, 2019, 331, 1-14.	2.5	1
83	Seismic signal from waves on Titan's seas. Earth and Planetary Science Letters, 2019, 520, 250-259.	4.4	9
84	Titan as Revealed by the Cassini Radar. Space Science Reviews, 2019, 215, 1.	8.1	34
85	Deep and methane-rich lakes on Titan. Nature Astronomy, 2019, 3, 535-542.	10.1	30
86	Modeling of Seasonal Lake Level Fluctuations of Titan's Seas/Lakes. Journal of Geophysical Research E: Planets, 2019, 124, 617-635.	3.6	7
87	One dimensional effervescence modeling of an extraterrestrial submarine in the Saturn Titan Seas. Planetary and Space Science, 2019, 170, 1-15.	1.7	0
88	An Investigation of the Behavior of a Coaxial Rotor in Descent and Ground Effect., 2019,,.		10
89	Laser-induced breakdown spectroscopy acoustic testing of the Mars 2020 microphone. Planetary and Space Science, 2019, 165, 260-271.	1.7	32
90	Collecting amino acids in the Enceladus plume. International Journal of Astrobiology, 2019, 18, 47-59.	1.6	24

#	Article	IF	CITATIONS
91	EOLIAN BEDFORMS IN THE REGION SURROUNDING THE INSIGHT LANDING SITE, MARS., 2019, , .		1
92	Alluvial and fluvial fans on Saturn's moon Titan reveal processes, materials and regional geology. Geological Society Special Publication, 2018, 440, 281-305.	1.3	19
93	Seismic Wave Propagation in Icy Ocean Worlds. Journal of Geophysical Research E: Planets, 2018, 123, 206-232.	3.6	35
94	Titan's cold case files - Outstanding questions after Cassini-Huygens. Planetary and Space Science, 2018, 155, 50-72.	1.7	37
95	Onboard Science Insights and Vehicle Dynamics from Scale-Model Trials of the Titan Mare Explorer (TiME) Capsule at Laguna Negra, Chile. Astrobiology, 2018, 18, 607-618.	3.0	2
96	Discharge current measurements on Venera 13 & Discharge current measurements on Venera 14 â € Discharge c	2.5	2
97	Expected Seismicity and the Seismic Noise Environment of Europa. Journal of Geophysical Research E: Planets, 2018, 123, 163-179.	3.6	38
98	Guidance, Navigation, and Control for Exploration of Titan with the Dragonfly Rotorcraft Lander. , 2018, , .		8
99	Vital Signs: Seismology of Icy Ocean Worlds. Astrobiology, 2018, 18, 37-53.	3.0	31
100	Empirical recurrence rates for ground motion signals on planetary surfaces. Icarus, 2018, 303, 273-279.	2.5	12
101	Morphological evidence that Titan's southern hemisphere basins are paleoseas. Icarus, 2018, 310, 140-148.	2.5	24
102	Venus atmospheric structure and dynamics from the VEGA lander and balloons: New results and PDS archive. lcarus, 2018, 305, 277-283.	2.5	17
103	A timelapse camera dataset and Markov model of dust devil activity at Eldorado playa, Nevada, USA. Aeolian Research, 2018, 33, 33-43.	2.7	4
104	Strategies for Detecting Biological Molecules on Titan. Astrobiology, 2018, 18, 571-585.	3.0	33
105	Electric properties of dust devils. Earth and Planetary Science Letters, 2018, 493, 71-81.	4.4	22
106	A post-Cassini view of Titan's methane-based hydrologic cycle. Nature Geoscience, 2018, 11, 306-313.	12.9	59
107	Enceladus plume density from Cassini spacecraft attitude control data. Icarus, 2018, 300, 200-202.	2.5	5
108	Bathymetry and composition of Titan's Ontario Lacus derived from Monte Carlo-based waveform inversion of Cassini RADAR altimetry data. Icarus, 2018, 300, 203-209.	2.5	38

#	Article	IF	CITATIONS
109	Explorer of Enceladus and Titan (E2T): Investigating ocean worlds' evolution and habitability in the solar system. Planetary and Space Science, 2018, 155, 73-90.	1.7	26
110	A numerical study of tides in Titan′s northern seas, Kraken and Ligeia Maria. Icarus, 2018, 310, 105-126.	2.5	7
111	Geophysical Investigations of Habitability in Iceâ€Covered Ocean Worlds. Journal of Geophysical Research E: Planets, 2018, 123, 180-205.	3.6	133
112	A framework for relating the structures and recovery statistics in pressure time-series surveys for dust devils. Icarus, 2018, 299, 166-174.	2.5	15
113	An analytical solubility model for nitrogen–methane–ethane ternary mixtures. Icarus, 2018, 299, 175-186.	2.5	11
114	Lightning detection on Venus: a critical review. Progress in Earth and Planetary Science, 2018, 5, .	3.0	24
115	Initiation of a lightning search using the lightning and airglow camera onboard the Venus orbiter Akatsuki. Earth, Planets and Space, 2018, 70, 88.	2.5	8
116	Titan's Twilight and Sunset Solar Illumination. Astronomical Journal, 2018, 156, 247.	4.7	3
117	Titan Submarines: Options for Exploring The Depths of Titan's Seas. , 2018, , .		1
118	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	8.1	88
119	Observational evidence for active dust storms on Titan at equinox. Nature Geoscience, 2018, 11, 727-732.	12.9	18
120	The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results. Space Science Reviews, 2018, 214, 1.	8.1	19
121	Geology and Physical Properties Investigations by the InSight Lander. Space Science Reviews, 2018, 214, 1.	8.1	77
122	Exploring Titan's cryogenic hydrocarbon seas with boat-deployed expendable dropsondes. Advances in Space Research, 2018, 62, 912-920.	2.6	9
123	Atmospheric test environments for planetary in-situ missions: Never quite "Test as you fly― Advances in Space Research, 2018, 62, 1884-1894.	2.6	6
124	Using an Instrumented Drone to Probe Dust Devils on Oregon's Alvord Desert. Remote Sensing, 2018, 10, 65.	4.0	6
125	Cassini radar observation of Punga Mare and environs: Bathymetry and composition. Earth and Planetary Science Letters, 2018, 496, 89-95.	4.4	20
126	Titan Submarine. , 2018, , 543-608.		1

#	Article	lF	Citations
127	Laboratory measurements of nitrogen dissolution in Titan lake fluids. Icarus, 2017, 289, 94-105.	2.5	35
128	The changing nature of rainfall during the early history of Mars. Icarus, 2017, 293, 172-179.	2.5	24
129	Energetics of rotary-wing exploration of Titan. , 2017, , .		17
130	Huygens probe: A retrospective and lessons for the future. , 2017, , .		2
131	Thermally anomalous features in the subsurface of Enceladusâ \in ^{Ms} south polar terrain. Nature Astronomy, 2017, 1, .	10.1	41
132	Potential Effects of Surface Temperature Variations and Disturbances and Thermal Convection on the Mars InSight HP3 Heat-Flow Determination. Space Science Reviews, 2017, 211, 277-313.	8.1	9
133	Wind shear and turbulence on Titan: Huygens analysis. Icarus, 2017, 295, 119-124.	2.5	8
134	Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion. Space Science Reviews, 2017, 211, 501-524.	8.1	49
135	Titan's Topography and Shape at the End of the Cassini Mission. Geophysical Research Letters, 2017, 44, 11,754.	4.0	78
136	Topographic Constraints on the Evolution and Connectivity of Titan's Lacustrine Basins. Geophysical Research Letters, 2017, 44, 11,745.	4.0	43
137	Surface roughness of Titan's hydrocarbon seas. Earth and Planetary Science Letters, 2017, 474, 20-24.	4.4	21
138	Geomorphologic mapping of titan's polar terrains: Constraining surface processes and landscape evolution. Icarus, 2017, 282, 214-236.	2.5	46
139	Drifting buoy and autonomous submersible designs for the scientific exploration of Titan's seas. , 2017, , .		1
140	Vikingâ€⊋ Seismometer Measurements on Mars: PDS Data Archive and Meteorological Applications. Earth and Space Science, 2017, 4, 681-688.	2.6	24
141	Gypsum gravel devils in Chile: Movement of largest natural grains by wind?: COMMENT. Geology, 2017, 45, e423-e423.	4.4	0
142	Dust Devil Formation. Space Sciences Series of ISSI, 2017, , 183-207.	0.0	2
143	Dust Devil Populations and Statistics. Space Sciences Series of ISSI, 2017, , 277-297.	0.0	0
144	History and Applications of Dust Devil Studies. Space Sciences Series of ISSI, 2017, , 5-37.	0.0	1

#	Article	IF	CITATIONS
145	Special Issue on Dust Devils. Space Sciences Series of ISSI, 2017, , 1-4.	0.0	1
146	Field Measurements of Terrestrial and Martian Dust Devils. Space Sciences Series of ISSI, 2017, , 39-87.	0.0	1
147	Dust Devil Steady-State Structure from a Fluid Dynamics Perspective. Space Sciences Series of ISSI, 2017, , 209-244.	0.0	O
148	Dust Devil Sediment Transport: From Lab to Field to Global Impact. Space Sciences Series of ISSI, 2017, , 377-426.	0.0	1
149	Exploring the depths of Kraken Mare $\hat{a} \in \mathbb{C}$ Power, thermal analysis, and ballast control for the Saturn Titan submarine. Cryogenics, 2016, 74, 31-46.	1.7	28
150	History and Applications of Dust Devil Studies. Space Science Reviews, 2016, 203, 5-37.	8.1	43
151	Fluvial erosion as a mechanism for crater modification on Titan. Icarus, 2016, 270, 114-129.	2.5	41
152	Heat Rejection in the Titan Surface Environment: Potential Impact on Science Investigations. Journal of Thermophysics and Heat Transfer, 2016, 30, 257-265.	1.6	9
153	Dust Devil Populations and Statistics. Space Science Reviews, 2016, 203, 277-297.	8.1	32
154	Dust Devil Steady-State Structure from a Fluid Dynamics Perspective. Space Science Reviews, 2016, 203, 209-244.	8.1	37
155	Material transport map of Titan: The fate of dunes. Icarus, 2016, 270, 183-196.	2.5	32
156	Saturn Spacecraft Power: Trading Radioisotope, Solar, and Fission Power Systems. , 2016, , .		0
157	Liquidâ€filled canyons on Titan. Geophysical Research Letters, 2016, 43, 7887-7894.	4.0	32
158	Dust Devil Formation. Space Science Reviews, 2016, 203, 183-207.	8.1	34
159	Dust Devil Sediment Transport: From Lab to Field to Global Impact. Space Science Reviews, 2016, 203, 377-426.	8.1	35
160	Field Measurements of Terrestrial and Martian Dust Devils. Space Science Reviews, 2016, 203, 39-87.	8.1	39
161	Point discharge current measurements beneath dust devils. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 150-151, 55-60.	1.6	6
162	Dust devils in thin air: Vortex observations at a highâ€elevation Mars analog site in the Argentinian Puna. Geophysical Research Letters, 2016, 43, 4010-4016.	4.0	10

#	Article	IF	CITATIONS
163	Editorial: Topical Volume on Dust Devils. Space Science Reviews, 2016, 203, 1-4.	8.1	2
164	Sun-stirred Kraken Mare: Circulation in Titan's seas induced by solar heating and methane precipitation. Icarus, 2016, 270, 67-84.	2.5	18
165	The electrical properties of Titan's surface at the Huygens landing site measured with the PWA–HASI Mutual Impedance Probe. New approach and new findings. Icarus, 2016, 270, 272-290.	2.5	11
166	Geomorphological map of the Afekan Crater region, Titan: Terrain relationships in the equatorial and mid-latitude regions. Icarus, 2016, 270, 130-161.	2.5	38
167	Lander rocket exhaust effects on Europa regolith nitrogen assays. Planetary and Space Science, 2016, 127, 91-94.	1.7	10
168	Titan's surface at 2.18-cm wavelength imaged by the Cassini RADAR radiometer: Results and interpretations through the first ten years of observation. Icarus, 2016, 270, 443-459.	2.5	79
169	Heuristic estimation of dust devil vortex parameters and trajectories from single-station meteorological observations: Application to InSight at Mars. Icarus, 2016, 271, 326-337.	2.5	42
170	Eruptive behavior of the Marum/Mbwelesu lava lake, Vanuatu and comparisons with lava lakes on Earth and Io. Journal of Volcanology and Geothermal Research, 2016, 322, 105-118.	2.1	11
171	Detecting volcanism on Titan and Venus with microwave radiometry. Icarus, 2016, 270, 30-36.	2.5	5
172	Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission. Journal of Geophysical Research E: Planets, 2016, 121, 233-251.	3.6	44
173	The tectonics of Titan: Global structural mapping from Cassini RADAR. Icarus, 2016, 270, 14-29.	2.5	29
174	Probing Pluto's underworld: Ice temperatures from microwave radiometry decoupled from surface conditions. Icarus, 2016, 268, 50-55.	2.5	9
175	Dust devil track survey at Elysium Planitia, Mars: Implications for the InSight landing sites. Icarus, 2016, 266, 315-330.	2.5	39
176	Temporal behavior and temperatures of Yasur volcano, Vanuatu from field remote sensing observations, May 2014. Journal of Volcanology and Geothermal Research, 2016, 322, 158-167.	2.1	3
177	Observations of the surface of Titan by the Radar Altimeters on the Huygens Probe. Icarus, 2016, 270, 248-259.	2.5	4
178	Titan's "Magic Islands― Transient features in a hydrocarbon sea. Icarus, 2016, 271, 338-349.	2.5	37
179	Europa ocean sampling by plume flythrough: Astrobiological expectations. Icarus, 2016, 267, 217-219.	2.5	20
180	The roar of Yasur: Handheld audio recorder monitoring of Vanuatu volcanic vent activity. Journal of Volcanology and Geothermal Research, 2016, 322, 168-174.	2.1	4

#	Article	IF	CITATIONS
181	Surface winds on Venus: Probability distribution from in-situ measurements. Icarus, 2016, 264, 311-315.	2.5	26
182	Instrumented splashdown testing of a scale model Titan Mare Explorer (TiME) capsule. Aeronautical Journal, 2015, 119, 409-431.	1.6	5
183	Titan Submarine: Exploring the Depths of Kraken Mare. , 2015, , .		7
184	Inversion of a Capsule Impacting Water: Flip by Resurge Jet. Journal of Offshore Mechanics and Arctic Engineering, $2015,137,$	1.2	3
185	In-situ measurement of dust devil activity at La Jornada Experimental Range, New Mexico, USA. Aeolian Research, 2015, 19, 183-194.	2.7	20
186	Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus, 2015, 260, 246-262.	2.5	48
187	A multiyear dust devil vortex survey using an automated search of pressure time series. Journal of Geophysical Research E: Planets, 2015, 120, 401-412.	3.6	16
188	Dust devil signatures in infrasound records of the International Monitoring System. Geophysical Research Letters, 2015, 42, 2009-2014.	4.0	22
189	Io Volcanic Plumes: Spacecraft Flythrough Hazard Evaluation. Journal of Spacecraft and Rockets, 2015, 52, 990-993.	1.9	6
190	Seismometer Detection of Dust Devil Vortices by Ground Tilt. Bulletin of the Seismological Society of America, 2015, 105, 3015-3023.	2.3	39
191	Energy Cost of Acquiring and Transmitting Science Data on Deep-Space Missions. Journal of Spacecraft and Rockets, 2015, 52, 1691-1695.	1.9	4
192	Meteorological insights from planetary heat flow measurements. Icarus, 2015, 250, 262-267.	2.5	6
193	Dust devils and dustless vortices on a desert playa observed with surface pressure and solar flux logging. GeoResJ, 2015, 5, 1-11.	1.4	26
194	Temperatures, thermal structure, and behavior of eruptions at Kilauea and Erta Ale volcanoes using a consumer digital camcorder. GeoResJ, 2015, 5, 47-56.	1.4	7
195	Windâ€driven circulation in Titan's seas. Journal of Geophysical Research E: Planets, 2015, 120, 20-33.	3.6	18
196	Voyage across Ligeia Mare: Mechanics of sailing on the hydrocarbon seas of Saturn×3s Moon, Titan. Ocean Engineering, 2015, 104, 119-128.	4.3	9
197	Twilight on Ligeia: Implications of communications geometry and seasonal winds for exploring Titan's seas 2020–2040. Advances in Space Research, 2015, 56, 190-204.	2.6	5
198	Production and global transport of Titan's sand particles. Planetary Science, 2015, 4, .	1.5	35

#	Article	IF	Citations
199	Touchdown on Venus: Analytic wind models and a heuristic approach to estimating landing dispersions. Planetary and Space Science, 2015, 108, 66-72.	1.7	10
200	Gamma rays and cosmic rays at Venus: The Pioneer Venus gamma ray detector and considerations for future measurements. Planetary and Space Science, 2015, 109-110, 129-134.	1.7	4
201	Laboratory measurements of cryogenic liquid alkane microwave absorptivity and implications for the composition of Ligeia Mare, Titan. Geophysical Research Letters, 2015, 42, 1340-1345.	4.0	48
202	The restless rock of Racetrack Playa. Physics World, 2015, 28, 24-28.	0.0	1
203	Probabilistic constraints from existing and future radar imaging on volcanic activity on Venus. Planetary and Space Science, 2015, 117, 356-361.	1.7	7
204	Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus, 2015, 248, 162-164.	2.5	46
205	Sliding Rocks on Racetrack Playa, Death Valley National Park: First Observation of Rocks in Motion. PLoS ONE, 2014, 9, e105948.	2.5	25
206	Surface of Ligeia Mare, Titan, from Cassini altimeter and radiometer analysis. Geophysical Research Letters, 2014, 41, 308-313.	4.0	43
207	The exploration of Titan with an orbiter and a lake probe. Planetary and Space Science, 2014, 104, 78-92.	1.7	26
208	Vortex Encounter Rates with Fixed Barometer Stations: Comparison with Visual Dust Devil Counts and Large-Eddy Simulations. Journals of the Atmospheric Sciences, 2014, 71, 4461-4472.	1.7	43
209	Global mapping and characterization of Titan's dune fields with Cassini: Correlation between RADAR and VIMS observations. Icarus, 2014, 230, 168-179.	2.5	68
210	Elevation dependence of bedform wavelength on Tharsis Montes, Mars: Atmospheric density as a controlling parameter. Icarus, 2014, 230, 77-80.	2.5	16
211	Buoyant thermal plumes from planetary landers and rovers: Application to sizing of meteorological masts. Planetary and Space Science, 2014, 90, 81-89.	1.7	14
212	A simple webcam spectrograph. American Journal of Physics, 2014, 82, 169-173.	0.7	17
213	Dune Worlds., 2014,,.		51
214	Declining rock movement at Racetrack Playa, Death Valley National Park: An indicator of climate change?. Geomorphology, 2014, 211, 116-120.	2.6	4
215	Silence on Shangri-La: Attenuation of Huygens acoustic signals suggests surface volatiles. Planetary and Space Science, 2014, 90, 72-80.	1.7	12
216	Elevation distribution of Titan's craters suggests extensive wetlands. Icarus, 2014, 228, 27-34.	2.5	38

#	Article	IF	CITATIONS
217	MASER: A Mars meteorology and seismology mini-network mission concept enabled by Milliwatt-RPS. , 2014, , .		1
218	Transient features in a Titan sea. Nature Geoscience, 2014, 7, 493-496.	12.9	43
219	Rocks of ages. New Scientist, 2014, 223, 39-41.	0.0	0
220	Compact and inexpensive kite apparatus for geomorphological field aerial photography, with some remarks on operations. GeoResJ, 2014, 3-4, 1-8.	1.4	10
221	A Barometric Survey of Dust-Devil Vortices on a Desert Playa. Boundary-Layer Meteorology, 2014, 153, 555-568.	2.3	28
222	lapetus' near surface thermal emission modeled and constrained using Cassini RADAR Radiometer microwave observations. Icarus, 2014, 241, 221-238.	2.5	20
223	Numerical simulation of tides and oceanic angular momentum of Titan's hydrocarbon seas. Icarus, 2014, 242, 188-201.	2.5	24
224	Physics of saltation and sand transport on Titan: A brief review. Icarus, 2014, 230, 162-167.	2.5	45
225	Growth mechanisms and dune orientation on Titan. Geophysical Research Letters, 2014, 41, 6093-6100.	4.0	52
226	Modeling the SAR backscatter of linear dunes on Earth and Titan. Icarus, 2014, 230, 208-214.	2.5	11
227	Implications of dune pattern analysis for Titan's surface history. Icarus, 2014, 230, 180-190.	2.5	30
228	The bathymetry of a Titan sea. Geophysical Research Letters, 2014, 41, 1432-1437.	4.0	119
229	Gravity waves in Titan's lower stratosphere from Huygens probe in situ temperature measurements. Icarus, 2014, 227, 49-55.	2.5	14
230	Modeling microwave backscatter and thermal emission from linear dune fields: Application to Titan. Icarus, 2014, 230, 198-207.	2.5	10
231	A radar map of Titan Seas: Tidal dissipation and ocean mixing through the throat of Kraken. Icarus, 2014, 237, 9-15.	2.5	33
232	The flushing of Ligeia: Composition variations across Titan's seas in a simple hydrological model. Geophysical Research Letters, 2014, 41, 5764-5770.	4.0	38
233	Understanding the Evolution of Titan's Surface, Interior, and Atmosphere. Eos, 2014, 95, 272-272.	0.1	0
234	Sand. , 2014, , 17-25.		3

#	Article	IF	CITATIONS
235	Precipitation-induced surface brightenings seen on Titan by Cassini VIMS and ISS. Planetary Science, 2013, 2, .	1.5	45
236	Dunes on planet Tatooine: Observation of barchan migration at the Star Wars film set in Tunisia. Geomorphology, 2013, 201, 264-271.	2.6	28
237	11.15 Extraterrestrial Aeolian Landscapes. , 2013, , 287-312.		5
238	Irregular dust devil pressure drops on Earth and Mars: Effect of cycloidal tracks. Planetary and Space Science, 2013, 76, 96-103.	1.7	21
239	A model of variability in Titan's atmospheric structure. Planetary and Space Science, 2013, 86, 45-56.	1.7	14
240	Tracking desert dust devils with in-situ pressure sensors and imaging. , 2013, , .		0
241	TiME - The Titan Mare Explorer. , 2013, , .		34
242	Crater topography on Titan: Implications for landscape evolution. Icarus, 2013, 223, 82-90.	2.5	42
243	The longevity and aspect ratio of dust devils: Effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus, 2013, 226, 964-970.	2.5	38
244	Recent developments in planetary Aeolian studies and their terrestrial analogs. Aeolian Research, 2013, 11, 109-126.	2.7	18
245	Wind driven capillary-gravity waves on Titan's lakes: Hard to detect or non-existent?. Icarus, 2013, 225, 403-412.	2.5	42
246	A global topographic map of Titan. Icarus, 2013, 225, 367-377.	2.5	70
247	Plumbing the depths of Ligeia: Considerations for depth sounding in Titan's hydrocarbon seas. Journal of the Acoustical Society of America, 2013, 134, 4335-4350.	1.1	17
248	Maximum entropy production - Full steam ahead. , 2012, , .		0
249	Thermal Drilling in Planetary Ices: An Analytic Solution with Application to Planetary Protection Problems of Radioisotope Power Sources. Astrobiology, 2012, 12, 799-802.	3.0	17
250	Bouncing on Titan: Motion of the Huygens probe in the seconds after landing. Planetary and Space Science, 2012, 73, 327-340.	1.7	21
251	Formulation of a wind specification for Titan late polar summer exploration. Planetary and Space Science, 2012, 70, 73-83.	1.7	31
252	The Huygens surface science package (SSP): Flight performance review and lessons learned. Planetary and Space Science, 2012, 70, 28-45.	1.7	13

#	Article	IF	CITATIONS
253	Observing desert dust devils with a pressure logger. Geoscientific Instrumentation, Methods and Data Systems, 2012, 1, 209-220.	1.6	20
254	The growth of wind-waves in Titan's hydrocarbon seas. Icarus, 2012, 219, 468-475.	2.5	29
255	Winds and tides of Ligeia Mare, with application to the drift of the proposed time TiME (Titan Mare) Tj ETQq $1\ 1$	0.784314 1.7	rgBT/Overloo
256	Titan's fluvial valleys: Morphology, distribution, and spectral properties. Planetary and Space Science, 2012, 60, 34-51.	1.7	98
257	Titan's global crater population: A new assessment. Planetary and Space Science, 2012, 60, 26-33.	1.7	71
258	Power law distribution of pressure drops in dust devils: Observation techniques and Earth–Mars comparison. Planetary and Space Science, 2012, 60, 370-375.	1.7	28
259	Planetary seismology—Expectations for lander and wind noise with application to Venus. Planetary and Space Science, 2012, 62, 86-96.	1.7	25
260	Titan through time: Formation, evolution and fate. Planetary and Space Science, 2012, 60, 1-2.	1.7	0
261	AVIATRâ€"Aerial Vehicle for In-situ and Airborne Titan Reconnaissance. Experimental Astronomy, 2012, 33, 55-127.	3.7	45
262	The evolution of Titan's detached haze layer near equinox in 2009. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	47
263	Observations of wind ripple migration on an Egyptian seif dune using an inexpensive digital timelapse camera. Aeolian Research, 2011, 3, 229-234.	2.7	12
264	Ice rafts not sails: Floating the rocks at Racetrack Playa. American Journal of Physics, 2011, 79, 37-42.	0.7	18
265	Technology development for NASA science missions: Challenges and potential opportunities. , 2011, , .		1
266	Variable wind ripple migration at Great Sand Dunes National Park and Preserve, observed by timelapse imaging. Geomorphology, 2011, 133, 1-10.	2.6	24
267	On the statistical distribution of dust devil diameters. Icarus, 2011, 215, 381-390.	2.5	48
268	Regional geomorphology and history of Titan's Xanadu province. Icarus, 2011, 211, 672-685.	2.5	52
269	Transient surface liquid in Titan's polar regions from Cassini. Icarus, 2011, 211, 655-671.	2.5	113
270	Cassini SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields. Icarus, 2011, 213, 608-624.	2.5	74

#	Article	IF	CITATIONS
271	Analog environments for a Europa lander mission. Advances in Space Research, 2011, 48, 689-696.	2.6	21
272	Planetary penetrators: Their origins, history and future. Advances in Space Research, 2011, 48, 403-431.	2.6	32
273	Hypsometry of Titan. Icarus, 2011, 211, 699-706.	2.5	22
274	Meteorological Conditions at Racetrack Playa, Death Valley National Park: Implications for Rock Production and Transport. Journal of Applied Meteorology and Climatology, 2011, 50, 2361-2375.	1.5	8
275	Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers. Science, 2011, 331, 1414-1417.	12.6	184
276	New Cassini RADAR results for Saturn's icy satellites. Icarus, 2010, 206, 498-506.	2.5	16
277	Distribution and interplay of geologic processes on Titan from Cassini radar data. Icarus, 2010, 205, 540-558.	2.5	122
278	Atmospheric/Exospheric Characteristics of Icy Satellites. Space Science Reviews, 2010, 153, 155-184.	8.1	31
279	Characteristics of Icy Surfaces. Space Science Reviews, 2010, 153, 63-111.	8.1	32
280	Racetrack and Bonnie Claire: southwestern US playa lakes as analogs for Ontario Lacus, Titan. Planetary and Space Science, 2010, 58, 724-731.	1.7	28
281	Attitude and angular rates of planetary probes during atmospheric descent: Implications for imaging. Planetary and Space Science, 2010, 58, 838-846.	1.7	13
282	A 3km atmospheric boundary layer on Titan indicated by dune spacing and Huygens data. Icarus, 2010, 205, 719-721.	2.5	47
283	Impact craters on Titan. Icarus, 2010, 206, 334-344.	2.5	126
284	Threshold of wave generation on Titan's lakes and seas: Effect of viscosity and implications for Cassini observations. Icarus, 2010, 207, 932-937.	2.5	54
285	Radar-bright channels on Titan. Icarus, 2010, 207, 948-958.	2.5	62
286	Radarclinometry of the sand seas of Africa's Namibia and Saturn's moon Titan. Icarus, 2010, 208, 385-394.	2.5	45
287	Penetrometry of granular and moist planetary surface materials: Application to the Huygens landing site on Titan. Icarus, 2010, 210, 843-851.	2.5	21
288	The Moon That Would Be a Planet. Scientific American, 2010, 302, 36-43.	1.0	12

#	Article	IF	CITATIONS
289	The two-box model of climate: limitations and applications to planetary habitability and maximum entropy production studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1349-1354.	4.0	15
290	Winds of Change on Titan. Science, 2010, 329, 519-520.	12.6	14
291	Studies of desert dust devils with a sensor network, timelapse cameras and thermal imaging. , 2010, , .		3
292	Inexpensive Time-Lapse Digital Cameras for Studying Transient Meteorological Phenomena: Dust Devils and Playa Flooding. Journal of Atmospheric and Oceanic Technology, 2010, 27, 246-256.	1.3	25
293	Active shoreline of Ontario Lacus, Titan: A morphological study of the lake and its surroundings. Geophysical Research Letters, 2010, 37, .	4.0	66
294	Bathymetry and absorptivity of Titan's Ontario Lacus. Journal of Geophysical Research, 2010, 115 , .	3.3	49
295	Linear dunes on Titan and earth: Initial remote sensing comparisons. Geomorphology, 2010, 121, 122-132.	2.6	97
296	Titan Unveiled. , 2010, , .		61
297	Characteristics of Icy Surfaces. Space Sciences Series of ISSI, 2010, , 61-109.	0.0	3
298	Atmospheric/Exospheric Characteristics of Icy Satellites. Space Sciences Series of ISSI, 2010, , 153-182.	0.0	0
299	Size and Shape of Saturn's Moon Titan. Science, 2009, 324, 921-923.	12.6	86
300	Cassini RADAR Sequence Planning and Instrument Performance. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 1777-1795.	6.3	24
301	Determining Titan surface topography from Cassini SAR data. Icarus, 2009, 202, 584-598.	2.5	108
302	Earth-Based Support for the Titan Saturn System Mission. Earth, Moon and Planets, 2009, 105, 135-142.	0.6	6
303	TandEM: Titan and Enceladus mission. Experimental Astronomy, 2009, 23, 893-946.	3.7	77
304	An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nature Geoscience, 2009, 2, 851-854.	12.9	153
305	Titan's surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Calibration and first results. Icarus, 2009, 200, 222-239.	2.5	104
306	Analysis and interpretation of Cassini Titan radar altimeter echoes. Icarus, 2009, 200, 240-255.	2.5	37

#	Article	IF	CITATIONS
307	Power law of dust devil diameters on Mars and Earth. Icarus, 2009, 203, 683-684.	2.5	41
308	Smoothness of Titan's Ontario Lacus: Constraints from Cassini RADAR specular reflection data. Geophysical Research Letters, 2009, 36, .	4.0	59
309	The shape of Saturn's moon Titan from Cassini radar altimeter and SAR monopulse observations. , 2009, , .		0
310	Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity. Geophysical Research Letters, 2009, 36, .	4.0	55
311	Global pattern of Titan's dunes: Radar survey from the Cassini prime mission. Geophysical Research Letters, 2009, 36, .	4.0	102
312	Rivers, Lakes, Dunes, and Rain: Crustal Processes in Titan's Methane Cycle. Annual Review of Earth and Planetary Sciences, 2009, 37, 299-320.	11.0	79
313	Seasonal Change on Titan., 2009, , 353-372.		4
314	Titan Beyond Cassiniâ€"Huygens. , 2009, , 479-488.		1
315	Mapping Products of Titan's Surface. , 2009, , 489-510.		5
316	Geology and Surface Processes on Titan. , 2009, , 75-140.		27
317	Volatile Origin and Cycles: Nitrogen and Methane. , 2009, , 177-199.		18
318	Radar topography of domes on planetary surfaces. Icarus, 2008, 196, 552-564.	2.5	11
319	Electrical Effects on Atmospheric Chemistry. Space Science Reviews, 2008, 137, 295-299.	8.1	2
320	Atmospheric Electricity Hazards. Space Science Reviews, 2008, 137, 287-294.	8.1	12
321	Titan's surface from the Cassini RADAR radiometry data during SAR mode. Planetary and Space Science, 2008, 56, 100-108.	1.7	12
322	Fluvial channels on Titan: Initial Cassini RADAR observations. Planetary and Space Science, 2008, 56, 1132-1144.	1.7	151
323	Dunes on Titan observed by Cassini Radar. Icarus, 2008, 194, 690-703.	2.5	193
324	Titan's diverse landscapes as evidenced by Cassini RADAR's third and fourth looks at Titan. Icarus, 2008, 195, 415-433.	2.5	65

#	Article	IF	CITATIONS
325	Cassini RADAR constraint on Titan's winter polar precipitation. Icarus, 2008, 195, 812-816.	2.5	13
326	In situ thermal conductivity measurements of Titan's lower atmosphere. Icarus, 2008, 197, 579-584.	2.5	7
327	Fluvial erosion and post-erosional processes on Titan. Icarus, 2008, 197, 526-538.	2.5	88
328	Bearing damage analysis by calculation of capacitive coupling between inner and outer races of a ball bearing. , 2008, , .		12
329	Titan's inventory of organic surface materials. Geophysical Research Letters, 2008, 35, .	4.0	184
330	Microwave dielectric constant of liquid hydrocarbons: Application to the depth estimation of Titan's lakes. Geophysical Research Letters, 2008, 35, .	4.0	24
331	Titan Explorer., 2008,,.		11
332	Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith. Geophysical Research Letters, 2008, 35, .	4.0	227
333	Microwave dielectric constant of Titanâ€relevant materials. Geophysical Research Letters, 2008, 35, .	4.0	54
334	Titan Explorer: A NASA Flagship Mission Concept. AIP Conference Proceedings, 2008, , .	0.4	6
335	Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds. Science, 2008, 319, 1649-1651.	12.6	178
336	The "Billion Dollar Box" Study of Science Missions to Saturnian Satellites. Aerospace Conference Proceedings IEEE, 2008, , .	0.0	0
337	Linear theory of optimum hot air balloon performance – application to Titan. Aeronautical Journal, 2008, 112, 353-355.	1.6	8
338	Titan's surface inventory of organic materials estimated from Cassini RADAR observations. Proceedings of the International Astronomical Union, 2008, 4, 329-330.	0.0	0
339	The changing face of Titan. Physics Today, 2008, 61, 34-39.	0.3	15
340	DETERMINING TITAN'S SPIN STATE FROM <i>CASSINI</i> RADAR IMAGES. Astronomical Journal, 2008, 135, 1669-1680.	4.7	78
341	Comments on "ln Situ Atmospheric Turbulence Measurement Using the Terrestrial Magnetic Field—A Compass for a Radiosonde― Journal of Atmospheric and Oceanic Technology, 2007, 24, 1519-1520.	1.3	4
342	Titan's young surface: Initial impact crater survey by Cassini RADAR and model comparison. Geophysical Research Letters, 2007, 34, .	4.0	72

#	Article	IF	CITATIONS
343	The lakes and seas of Titan. Eos, 2007, 88, 569-570.	0.1	30
344	Nearâ€infrared spectral mapping of Titan's mountains and channels. Journal of Geophysical Research, 2007, 112, .	3.3	82
345	Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus, 2007, 186, 395-412.	2.5	191
346	Speed of sound measurements and the methane abundance in Titan's atmosphere. Icarus, 2007, 189, 538-543.	2.5	19
347	Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys. Icarus, 2007, 191, 211-222.	2.5	38
348	Descent motions of the Huygens probe as measured by the Surface Science Package (SSP): Turbulent evidence for a cloud layer. Planetary and Space Science, 2007, 55, 1936-1948.	1.7	29
349	Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site. Planetary and Space Science, 2007, 55, 2025-2036.	1.7	168
350	Titan atmosphere profiles from Huygens engineering (temperature and acceleration) sensors. Planetary and Space Science, 2007, 55, 1949-1958.	1.7	5
351	The lakes of Titan. Nature, 2007, 445, 61-64.	27.8	507
352	Hydrocarbon lakes on Titan. Icarus, 2007, 186, 385-394.	2.5	188
352 353	Hydrocarbon lakes on Titan. Icarus, 2007, 186, 385-394. Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements. Icarus, 2007, 188, 367-385.	2.5	188
	Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements. Icarus, 2007,		
353	Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements. Icarus, 2007, 188, 367-385.	2.5	51
353 354	Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements. Icarus, 2007, 188, 367-385. Mountains on Titan observed by Cassini Radar. Icarus, 2007, 192, 77-91.	2.5	51 140
353 354 355	Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements. Icarus, 2007, 188, 367-385. Mountains on Titan observed by Cassini Radar. Icarus, 2007, 192, 77-91. The Future of AI in Space. IEEE Intelligent Systems, 2006, 21, 64-69. Titan's damp ground: Constraints on Titan surface thermal properties from the temperature	2.5 2.5 4.0	51 140 25
353 354 355 356	Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements. Icarus, 2007, 188, 367-385. Mountains on Titan observed by Cassini Radar. Icarus, 2007, 192, 77-91. The Future of AI in Space. IEEE Intelligent Systems, 2006, 21, 64-69. Titan's damp ground: Constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet. Meteoritics and Planetary Science, 2006, 41, 1705-1714. Quantitative geomorphic modeling of Martian bedrock shorelines. Journal of Geophysical Research,	2.5 2.5 4.0	51 140 25 60
353 354 355 356	Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements. Icarus, 2007, 188, 367-385. Mountains on Titan observed by Cassini Radar. Icarus, 2007, 192, 77-91. The Future of AI in Space. IEEE Intelligent Systems, 2006, 21, 64-69. Titan's damp ground: Constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet. Meteoritics and Planetary Science, 2006, 41, 1705-1714. Quantitative geomorphic modeling of Martian bedrock shorelines. Journal of Geophysical Research, 2006, 111, . Huygens entry emission: Observation campaign, results, and lessons learned. Journal of Geophysical	2.5 2.5 4.0 1.6	51 140 25 60 26

#	Article	IF	CITATIONS
361	Seasonal evolution of Titan's dark polar hood: midsummer disappearance observed by the Hubble Space Telescope. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1683-1687.	4.4	15
362	Titan Radar Mapper observations from Cassini's T3 fly-by. Nature, 2006, 441, 709-713.	27.8	95
363	Sediment transport by liquid surficial flow: Application to Titan. Icarus, 2006, 181, 235-242.	2.5	91
364	Thermal interactions of the Huygens probe with the Titan environment: Constraint on near-surface wind. Icarus, 2006, 182, 559-566.	2.5	36
365	Cassini RADAR observations of Enceladus, Tethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe. Icarus, 2006, 183, 479-490.	2.5	76
366	Physical properties of Titan's surface at the Huygens landing site from the Surface Science Package Acoustic Properties sensor (API-S). Icarus, 2006, 185, 457-465.	2.5	18
367	Mapping of Titan: Results from the first Titan radar passes. Icarus, 2006, 185, 443-456.	2.5	49
368	GCM simulation of balloon trajectories on Titan. Planetary and Space Science, 2006, 54, 685-694.	1.7	20
369	Demonstration of comet sample collection by penetrator. Acta Astronautica, 2006, 59, 1000-1007.	3.2	7
370	Inferring the composition of the liquid surface on Titan at the Huygens probe landing site from Surface Science Package measurements. Advances in Space Research, 2006, 38, 794-798.	2.6	2
371	The potential for prebiotic chemistry in the possible cryovolcanic dome Ganesa Macula on Titan. International Journal of Astrobiology, 2006, 5, 57-65.	1.6	41
372	The Sand Seas of Titan: Cassini RADAR Observations of Longitudinal Dunes. Science, 2006, 312, 724-727.	12.6	351
373	Finite-time thermodynamics of an instrumented drinking bird toy. American Journal of Physics, 2006, 74, 677-682.	0.7	14
374	The Distribution and Nature of Titan's Aerosols: A New Look. Highlights of Astronomy, 2005, 13, 896-896.	0.0	0
375	Post-Cassini exploration of Titan: Science goals, instrumentation and mission concepts. Advances in Space Research, 2005, 36, 281-285.	2.6	14
376	Determination of physical properties of a planetary surface by measuring the deceleration of a probe upon impact: Application to Titan. Planetary and Space Science, 2005, 53, 594-600.	1.7	9
377	Titan's surface before Cassini. Planetary and Space Science, 2005, 53, 557-576.	1.7	44
378	Sea-surface wave growth under extraterrestrial atmospheres: Preliminary wind tunnel experiments with application to Mars and Titan. Icarus, 2005, 175, 556-560.	2.5	38

#	Article	IF	Citations
379	A 5-Micron-Bright Spot on Titan: Evidence for Surface Diversity. Science, 2005, 310, 92-95.	12.6	78
380	Physical properties as indicators of liquid compositions: Derivation of the composition for Titan's surface liquids from the Huygens SSP measurements. Monthly Notices of the Royal Astronomical Society, 2005, 359, 637-642.	4.4	5
381	A soft solid surface on Titan as revealed by the Huygens Surface Science Package. Nature, 2005, 438, 792-795.	27.8	139
382	Numerical calculations of the longevity of impact oases on Titan. Icarus, 2005, 173, 243-253.	2.5	75
383	Flight and attitude dynamics measurements of an instrumented Frisbee. Measurement Science and Technology, 2005, 16, 738-748.	2.6	14
384	Miniature testbeds for planetary exploration vehicles: Tumbleweed and Frisbee., 2005,,.		0
385	Cassini Radar Views the Surface of Titan. Science, 2005, 308, 970-974.	12.6	231
386	A post-Huygens Titan surface science mission design. , 2005, , .		2
387	Convective plumes and the scarcity of Titan's clouds. Geophysical Research Letters, 2005, 32, .	4.0	31
388	Mapping the structure and depth of lava tubes using ground penetrating radar. Geophysical Research Letters, 2005, 32, .	4.0	25
389	Atmospheres as engines: Heat, work and entropy. European Physical Journal Special Topics, 2004, 121, 105-114.	0.2	3
390	Earth's Entropy. Science, 2004, 306, 1681-1683.	12.6	1
391	Directed aerial robot explorers for planetary exploration. Advances in Space Research, 2004, 33, 1825-1830.	2.6	14
392	Radar: The Cassini Titan Radar Mapper. Space Science Reviews, 2004, 115, 71-110.	8.1	162
393	The temperature of Europa's subsurface water ocean. Icarus, 2004, 168, 498-502.	2.5	97
394	The Yarkovsky effect as a heat engine. Icarus, 2004, 170, 229-233.	2.5	5
395	Titan's surface and rotation: new results from VoyagerÂ1 images. Icarus, 2004, 170, 113-124.	2.5	38
396	Seasonal change in Titan's haze 1992-2002 from Hubble Space Telescope observations. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	26

#	Article	IF	CITATIONS
397	"Cometâ€tail―ejecta streaks: A predicted cratering landform unique to Titan. Meteoritics and Planetary Science, 2004, 39, 617-623.	1.6	7
398	Radar: The Cassini Titan Radar Mapper. , 2004, , 71-110.		7
399	Titan: A New World Covered in Submarine Craters?. Impact Studies, 2004, , 185-195.	0.5	2
400	A model of Titan's haze of fractal aerosols constrained by multiple observations. Planetary and Space Science, 2003, 51, 963-976.	1.7	74
401	A simple expression for vertical convective fluxes in planetary atmospheres. Icarus, 2003, 165, 407-413.	2.5	24
402	Backyard spectroscopy and photometry of Titan, Uranus and Neptune. Planetary and Space Science, 2003, 51, 113-125.	1.7	10
403	Cassini RADAR: prospects for Titan surface investigations using the microwave radiometer. Planetary and Space Science, 2003, 51, 353-364.	1.7	35
404	The seas of Titan. Eos, 2003, 84, 125.	0.1	33
405	Interior structure models and tidal Love numbers of Titan. Journal of Geophysical Research, 2003, 108,	3.3	111
406	The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle. Reviews of Geophysics, 2003, 41, .	23.0	320
407	Disturbing the solar system: Impacts, close encounters, and coming attractions by Alan E. Rubin. Meteoritics and Planetary Science, 2003, 38, 323-323.	1.6	0
408	PLANETARY SCIENCE: The Glitter of Distant Seas. Science, 2003, 302, 403-404.	12.6	8
409	COMPUTATIONAL MATHEMATICS: Full Steam Ahead-Probably. Science, 2003, 299, 837-838.	12.6	55
410	Planets, life and the production of entropy. International Journal of Astrobiology, 2002, 1, 3-13.	1.6	64
411	Maximum Frictional Dissipation and the Information Entropy of Windspeeds. Journal of Non-Equilibrium Thermodynamics, 2002, 27, .	4.2	11
412	Variable and Constant Features on Titan from HST. Highlights of Astronomy, 2002, 12, 650-650.	0.0	0
413	Work output of planetary atmospheric engines: dissipation in clouds and rain. Geophysical Research Letters, 2002, 29, 10-1.	4.0	16
414	Radiocarbon on Titan. Meteoritics and Planetary Science, 2002, 37, 867-874.	1.6	11

#	Article	IF	CITATIONS
415	Titan aerover all-terrain vehicle. AIP Conference Proceedings, 2002, , .	0.4	2
416	Thermodynamics of Geysers: Application to Titan. Icarus, 2002, 156, 176-183.	2.5	40
417	Titan's Snowline. Icarus, 2002, 158, 557-559.	2.5	15
418	Comparison of Viking Lander Descent Data and MOLA Topography Reveals Kilometer-Scale Offset in Mars Atmosphere Profiles. Icarus, 2002, 159, 259-261.	2.5	5
419	Methane Abundance on Titan, Measured by the Space Telescope Imaging Spectrograph. Icarus, 2002, 160, 375-385.	2.5	29
420	An artificial meteor on Titan?. Astronomy and Geophysics, 2002, 43, 5.14-5.18.	0.2	4
421	Target effects during penetrator emplacement: heating, triboelectric charging, and mechanical disruption. Planetary and Space Science, 2002, 50, 163-179.	1.7	12
422	Thermal and Evolved Gas Analyzer: Part of the Mars Volatile and Climate Surveyor integrated payload. Journal of Geophysical Research, 2001, 106, 17683-17698.	3.3	41
423	Physical properties of ammonia-rich ice: Application to Titan. Geophysical Research Letters, 2001, 28, 215-218.	4.0	51
424	Cassini Radio Detection and Ranging (RADAR): Earth and Venus observations. Journal of Geophysical Research, 2001, 106, 30271-30279.	3.3	11
425	Titan, Mars and Earth: Entropy production by latitudinal heat transport. Geophysical Research Letters, 2001, 28, 415-418.	4.0	190
426	Correction to "Titan, Mars and Earth: Entropy production by latitudinal heat transport― Geophysical Research Letters, 2001, 28, 3169-3169.	4.0	0
427	Titan's smile and collar: HST Observations of seasonal change 1994-2000. Geophysical Research Letters, 2001, 28, 4453-4456.	4.0	47
428	Physical properties of the organic aerosols and clouds on Titan. Planetary and Space Science, 2001, 49, 79-99.	1.7	151
429	Flight Power Scaling of Airplanes, Airships, and Helicopters: Application to Planetary Exploration. Journal of Aircraft, 2001, 38, 208-214.	2.4	32
430	Geologic settings for aqueous organic synthesis on Titan revisited. Enantiomer, 2001, 6, 83-96.	0.5	10
431	<title>Cassini radar: data analysis of the Earth flyby and simulation of Titan's flyby data</title> ., 2000,		4
432	Microtektites on Mars: Volume and Texture of Distal Impact Ejecta Deposits. Icarus, 2000, 144, 353-366.	2.5	22

#	Article	IF	CITATIONS
433	Penetration tests on the DS-2 Mars microprobes: penetration depth and impact accelerometry. Planetary and Space Science, 2000, 48, 419-436.	1.7	34
434	Penetrator launch diagnostics from breech pressure measurements during operation of an air cannon. Measurement Science and Technology, 2000, 11, 1819-1823.	2.6	2
435	PLANETARY SCIENCE: The Weather on Titan. Science, 2000, 290, 467-468.	12.6	50
436	Thermophysical properties of Alaskan loess: An analog material for the Martian polar layered terrain?. Geophysical Research Letters, 2000, 27, 2769-2772.	4.0	34
437	Calorimetric radar absorptivity measurement using a microwave oven. Measurement Science and Technology, 1999, 10, L29-L32.	2.6	8
438	On the volatile inventory of Titan from isotopic abundances in nitrogen and methane. Planetary and Space Science, 1999, 47, 1291-1303.	1.7	100
439	Analytic investigation of climate stability on Titan: sensitivity to volatile inventory. Planetary and Space Science, 1999, 47, 1503-1515.	1.7	53
440	Analytic Solutions for the Antigreenhouse Effect: Titan and the Early Earth. Icarus, 1999, 137, 56-61.	2.5	61
441	Seasonal Change on Titan Observed with the Hubble Space Telescope WFPC-2. Icarus, 1999, 142, 391-401.	2.5	57
442	Deep Space 2: The Mars Microprobe Mission. Journal of Geophysical Research, 1999, 104, 27013-27030.	3.3	58
443	Preliminary Measurements of the Cryogenic Dielectric Properties of Water–Ammonia Ices: Implications for Radar Observations of Icy Satellites. Icarus, 1998, 136, 344-348.	2.5	27
444	Some speculations on Titans past, present and future. Planetary and Space Science, 1998, 46, 1099-1107.	1.7	27
445	Speed of sound in outer planet atmospheres. Planetary and Space Science, 1998, 47, 67-77.	1.7	14
446	Solar Array Degradation by Dust Impacts During Cometary Encounters. Journal of Spacecraft and Rockets, 1998, 35, 579-582.	1.9	4
447	Design Considerations for Venus Microprobes. Journal of Spacecraft and Rockets, 1998, 35, 228-230.	1.9	6
448	Did Comas Solà discover Titan's atmosphere?. Astronomy and Geophysics, 1997, 38, 16-18.	0.2	1
449	Titan under a red giant sun: A new kind of "habitable―moon. Geophysical Research Letters, 1997, 24, 2905-2908.	4.0	40
450	Photochemically Driven Collapse of Titan's Atmosphere. Science, 1997, 275, 642-644.	12.6	101

#	Article	IF	CITATIONS
451	Titan's surface reviewed: the nature of bright and dark terrain. Planetary and Space Science, 1997, 45, 981-992.	1.7	47
452	Impacts and cratering on Titan: a pre-Cassini view. Planetary and Space Science, 1997, 45, 1009-1019.	1.7	31
453	Latitudinal Variation of Aerosol Sizes Inferred from Titan's Shadow. Icarus, 1997, 125, 369-379.	2.5	33
454	Titan's North–South Asymmetry from HST and Voyager Imaging: Comparison with Models and Ground-Based Photometry. Icarus, 1997, 127, 173-189.	2.5	55
455	Titan's Surface, Revealed by HST Imaging. Icarus, 1996, 119, 336-349.	2.5	235
456	Erosion on Titan: Past and Present. Icarus, 1996, 122, 79-91.	2.5	101
457	Ablation and chemistry of meteoric materials in the atmosphere of Titan. Advances in Space Research, 1996, 17, 157-160.	2.6	45
458	Pillow lava on Titan: expectations and constraints on cryovolcanic processes. Planetary and Space Science, 1996, 44, 1021-1028.	1.7	64
459	Hiding Titan's ocean: densification and hydrocarbon storage in an icy regolith. Planetary and Space Science, 1996, 44, 1029-1037.	1.7	45
460	Martian surface wind speeds described by the Weibull distribution. Journal of Spacecraft and Rockets, 1996, 33, 754-756.	1.9	63
461	Tidal Dissipation on Titan. Icarus, 1995, 115, 278-294.	2.5	107
462	Raindrops on Titan. Advances in Space Research, 1995, 15, 317-320.	2.6	10
463	Prediction of aeolian features on planets: Application to Titan paleoclimatology. Journal of Geophysical Research, 1995, 100, 26377.	3.3	57
464	An impact penetrometer for a landing spacecraft. Measurement Science and Technology, 1994, 5, 1033-1041.	2.6	30
465	Crater lakes on Titan: rings, horseshoes and bullseyes. Planetary and Space Science, 1994, 42, 1-4.	1.7	26
466	Liquids and solids on the surface of Titan: results of a new photochemical model. Planetary and Space Science, 1994, 42, 5-14.	1.7	56
467	Wake-Induced Dust Cloud Formation Following Impact of Planetary Landers. Icarus, 1993, 101, 165-167.	2.5	8
468	The life, death and afterlife of a raindrop on Titan. Planetary and Space Science, 1993, 41, 647-655.	1.7	97

#	Article	IF	CITATIONS
469	Aerodynamic attitude stabilization for a small, low-orbiting, manoeuvrable satellite. Acta Astronautica, 1989, 19, 573-576.	3.2	1
470	Optimizing science return from Titan aerial explorers. , 0, , .		1
471	Titan Airship Explorer. , 0, , .		20
472	Subsurface ambient thermoelectric power for moles and penetrators. , 0, , .		4
473	Mars magnetometry from a tumbleweed rover. , 0, , .		5
474	12 Entropy Production in the Planetary Context. , 0, , 147-159.		1
475	What Titan is Really Like: In-Situ Measurements of the Titan Environment by the Huygens Probe., 0,,.		0