Stephen Mann

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1690608/stephen-mann-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36,400 396 179 102 h-index g-index citations papers 38,544 411 11.4 7.54 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
396	Triggerable Protocell Capture in Nanoparticle-Caged Coacervate Microdroplets <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	4
395	Polymer-Surfactant Driven Interactions and the Resultant Microstructure in Protein-Containing Liquid Crystal Droplets. <i>Langmuir</i> , 2021 , 37, 11949-11960	4	O
394	A Novel Acid-Degradable PEG Crosslinker for the Fabrication of pH-Responsive Soft Materials. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100102	4.8	2
393	Numerical implementation of drop spin and tilt method for five-axis tool positioning for tensor product surfaces. <i>International Journal of Advanced Manufacturing Technology</i> , 2021 , 115, 2001	3.2	
392	Chemical-mediated translocation in protocell-based microactuators. <i>Nature Chemistry</i> , 2021 , 13, 868-87	9 17.6	7
391	Giant Coacervate Vesicles As an Integrated Approach to Cytomimetic Modeling. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2866-2874	16.4	25
390	G-Quadruplex-Induced Liquid-Liquid Phase Separation in Biomimetic Protocells. <i>Journal of the American Chemical Society</i> , 2021 , 143, 11036-11043	16.4	6
389	A new approach to find gouge free tool positions for a toroidal cutter for Billier surfaces in five-axis machining. <i>International Journal of Advanced Manufacturing Technology</i> , 2021 , 117, 3053	3.2	2
388	Multipoint tool positioning of a toroidal end mill for five-axis machining of generalized tensor product Bzier surfaces. <i>International Journal of Advanced Manufacturing Technology</i> , 2020 , 111, 495-503	3.2	2
387	Lectin-Glycan-Mediated Nanoparticle Docking as a Step toward Programmable Membrane Catalysis and Adhesion in Synthetic Protocells. <i>ACS Nano</i> , 2020 , 14, 7899-7910	16.7	9
386	Detecting machine chatter using audio data and machine learning. <i>International Journal of Advanced Manufacturing Technology</i> , 2020 , 108, 3707-3716	3.2	4
385	Near-Infrared Fluorescent and Magnetic Resonance Dual-Imaging Coacervate Nanoprobes for Trypsin Mapping and Targeted Payload Delivery of Malignant Tumors. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 17302-17313	9.5	12
384	Light-Activated Signaling in DNA-Encoded Sender-Receiver Architectures. ACS Nano, 2020, 14, 15992-16	5 06 27	16
383	Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. <i>Nature Chemistry</i> , 2020 , 12, 1165-1173	17.6	33
382	Photosynthetic hydrogen production by droplet-based microbial micro-reactors under aerobic conditions. <i>Nature Communications</i> , 2020 , 11, 5985	17.4	13
381	On the Clifford Algebraic Description of Transformations in a 3D Euclidean Space. <i>Advances in Applied Clifford Algebras</i> , 2020 , 30, 1	1	
380	Spontaneous membrane-less multi-compartmentalization aqueous two-phase separation in complex coacervate micro-droplets. <i>Chemical Communications</i> , 2020 , 56, 12717-12720	5.8	15

379	A multipoint tool positioning method for five-axis machining in the region of two intersecting tensor product Bzier surfaces. <i>International Journal of Machine Tools and Manufacture</i> , 2019 , 142, 42-53	9.4	6	
378	Modulation of Higher-order Behaviour in Model Protocell Communities by Artificial Phagocytosis. <i>Angewandte Chemie</i> , 2019 , 131, 6399-6403	3.6	12	
377	Modulation of Higher-order Behaviour in Model Protocell Communities by Artificial Phagocytosis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6333-6337	16.4	30	
376	Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets. <i>Angewandte Chemie</i> , 2019 , 131, 14736-14740	3.6	18	
375	Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14594-14598	16.4	65	
374	Response-Retaliation Behavior in Synthetic Protocell Communities. <i>Angewandte Chemie</i> , 2019 , 131, 179) <u>3</u> 2617	987	
373	Response-Retaliation Behavior in Synthetic Protocell Communities. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17758-17763	16.4	27	
372	Chemical communication in spatially organized protocell colonies and protocell/living cell micro-arrays. <i>Chemical Science</i> , 2019 , 10, 9446-9453	9.4	43	
371	A method for generating multiple solutions for multipoint five-axis tool positioning. <i>International Journal of Advanced Manufacturing Technology</i> , 2019 , 100, 2509-2520	3.2	3	
370	An efficient multipoint 5-axis tool positioning method for tensor product surfaces. <i>International Journal of Advanced Manufacturing Technology</i> , 2018 , 97, 279-295	3.2	6	
369	Emergence and dynamics of self-producing information niches as a step towards pre-evolutionary organization. <i>Journal of the Royal Society Interface</i> , 2018 , 15,	4.1	1	
368	Chloroplast-containing coacervate micro-droplets as a step towards photosynthetically active membrane-free protocells. <i>Chemical Communications</i> , 2018 , 54, 3594-3597	5.8	41	
367	Numerical implementation of drop and tilt method of five-axis tool positioning for tensor product surfaces. <i>International Journal of Advanced Manufacturing Technology</i> , 2018 , 95, 219-232	3.2	5	
366	Construction of supramolecular hydrogels using photo-generated nitric oxide radicals. <i>Soft Matter</i> , 2018 , 14, 5950-5954	3.6	4	
365	Enzyme-powered motility in buoyant organoclay/DNA protocells. <i>Nature Chemistry</i> , 2018 , 10, 1154-116	3 17.6	68	
364	DKP algebra, DKP equation, and differential forms. <i>Journal of Mathematical Physics</i> , 2018 , 59, 083506	1.2	2	
363	The artificial cell: biology-inspired compartmentalization of chemical function. <i>Interface Focus</i> , 2018 , 8, 20180046	3.9	8	
362	3D representation and CNC machining of 2D digital images. <i>Procedia Manufacturing</i> , 2018 , 26, 10-20	1.5	3	

361	Nonequilibrium Spatiotemporal Sensing within Acoustically Patterned Two-Dimensional Protocell Arrays. <i>ACS Central Science</i> , 2018 , 4, 1551-1558	16.8	26
360	Paravectors and the Geometry of 3D Euclidean Space. <i>Advances in Applied Clifford Algebras</i> , 2018 , 28, 1	1	2
359	Modeling 3D Geometry in the Clifford Algebra R(4, 4). <i>Advances in Applied Clifford Algebras</i> , 2017 , 27, 3039-3062	1	10
358	Drop and tilt method of five-axis tool positioning for tensor product surfaces. <i>International Journal of Advanced Manufacturing Technology</i> , 2017 , 93, 617-622	3.2	4
357	Design and construction of artificial photoresponsive protocells capable of converting day light to chemical energy. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24612-24616	13	21
356	Single-step fabrication of multi-compartmentalized biphasic proteinosomes. <i>Chemical Communications</i> , 2017 , 53, 8537-8540	5.8	18
355	Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation. <i>Nature Communications</i> , 2016 , 7, 10658	17.4	69
354	Chemical Signaling and Functional Activation in Colloidosome-Based Protocells. <i>Small</i> , 2016 , 12, 1920-7	11	81
353	Dynamic Behavior in Enzyme-Polymer Surfactant Hydrogel Films. <i>Advanced Materials</i> , 2016 , 28, 1597-60	12 4	13
352	Selective Uptake and Refolding of Globular Proteins in Coacervate Microdroplets. <i>Langmuir</i> , 2016 , 32, 5881-9	4	57
351	Secretion and Reversible Assembly of Extracellular-like Matrix by Enzyme-Active Colloidosome-Based Protocells. <i>Langmuir</i> , 2016 , 32, 2912-9	4	17
350	The edgeEorus tangency problem in multipoint machining of triangulated surface models. <i>International Journal of Advanced Manufacturing Technology</i> , 2016 , 82, 1959-1972	3.2	9
349	A suite of de novo c-type cytochromes for functional oxidoreductase engineering. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2016 , 1857, 493-502	4.6	15
348	Hierarchical Proteinosomes for Programmed Release of Multiple Components. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7095-100	16.4	96
347	R(4, 4) As a Computational Framework for 3-Dimensional Computer Graphics. <i>Advances in Applied Clifford Algebras</i> , 2015 , 25, 113-149	1	9
346	Numeric implementation of drop and tilt method of 5-axis tool positioning for machining of triangulated surfaces. <i>International Journal of Advanced Manufacturing Technology</i> , 2015 , 78, 1677-1690) ^{3.2}	11
345	Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue. <i>Nature Communications</i> , 2015 , 6, 7405	17.4	53
344	In vitro gene expression within membrane-free coacervate protocells. <i>Chemical Communications</i> , 2015 , 51, 11429-32	5.8	122

(2014-2015)

343	Chlorhexidine hexametaphosphate nanoparticles as a novel antimicrobial coating for dental implants. <i>Journal of Materials Science: Materials in Medicine</i> , 2015 , 26, 201	4.5	36
342	Photocatalytic multiphase micro-droplet reactors based on complex coacervation. <i>Chemical Communications</i> , 2015 , 51, 8600-2	5.8	24
341	Multimodal plasmonics in fused colloidal networks. <i>Nature Materials</i> , 2015 , 14, 87-94	27	48
340	Synthesis and confinement of carbon dots in lysozyme single crystals produces ordered hybrid materials with tuneable luminescence. <i>Chemistry - A European Journal</i> , 2015 , 21, 9008-13	4.8	14
339	Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8398-401	16.4	60
338	High-Temperature Electrochemistry of a Solvent-Free Myoglobin Melt. ChemElectroChem, 2015, 2, 976-	9,8.3	7
337	Scallop Height of 5-axis Machining of Large Triangles with a Flat End Mill. <i>Computer-Aided Design and Applications</i> , 2015 , 12, 710-716	1.4	3
336	Structure and function of the silicifying peptide R5. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 2607-2614	1 7.3	49
335	A topological-free method for three-axis tool path planning for generalized radiused end milled cutting of a triangular mesh surface. <i>International Journal of Advanced Manufacturing Technology</i> , 2014 , 70, 1813-1825	3.2	8
334	A multipoint method for 5-axis machining of triangulated surface models. <i>CAD Computer Aided Design</i> , 2014 , 52, 17-26	2.9	21
333	Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. <i>Nature Chemistry</i> , 2014 , 6, 527-33	17.6	238
332	Molecular dynamics simulations reveal a dielectric-responsive coronal structure in protein-polymer surfactant hybrid nanoconstructs. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16824-31	16.4	35
331	Multifunctional porous microspheres based on peptide-porphyrin hierarchical co-assembly. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2366-70	16.4	143
330	In situ precipitation of amorphous and crystalline calcium sulphates in cellulose thin films. <i>CrystEngComm</i> , 2014 , 16, 3843-3847	3.3	9
329	In situ X-ray reflectivity studies of molecular and molecular-cluster intercalation within purple membrane films. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5447-5452	7.1	6
328	Bioactive Hybrid Organogels Based on Miniemulsion Synthesis of Morphologically Complex Polymer/Surfactant/Calcium Phosphate Nanostructures. <i>Chemistry of Materials</i> , 2014 , 26, 5965-5972	9.6	11
327	Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly. <i>Small</i> , 2014 , 10, 1830-40	11	57
326	Synthetic cellularity based on non-lipid micro-compartments and protocell models. <i>Current Opinion in Chemical Biology</i> , 2014 , 22, 1-11	9.7	125

325	Spontaneous growth and division in self-reproducing inorganic colloidosomes. <i>Small</i> , 2014 , 10, 3291-8	11	66
324	Self-organization of glucose oxidase-polymer surfactant nanoconstructs in solvent-free soft solids and liquids. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 11573-80	3.4	18
323	Enzyme activity in liquid lipase melts as a step towards solvent-free biology at 150 °C. <i>Nature Communications</i> , 2014 , 5, 5058	17.4	62
322	Computing Perspective Projections in 3-Dimensions Using Rotors in the Homogeneous and Conformal Models of Clifford Algebra. <i>Advances in Applied Clifford Algebras</i> , 2014 , 24, 465-491	1	3
321	Membrane-mediated cascade reactions by enzyme-polymer proteinosomes. <i>Chemical Communications</i> , 2014 , 50, 6278-80	5.8	73
320	Design and construction of higher-order structure and function in proteinosome-based protocells. Journal of the American Chemical Society, 2014 , 136, 9225-34	16.4	131
319	Membrane engineering of colloidosome microcompartments using partially hydrophobic mesoporous silica nanoparticles. <i>Langmuir</i> , 2014 , 30, 15047-52	4	37
318	Nanoparticle-based membrane assembly and silicification in coacervate microdroplets as a route to complex colloidosomes. <i>Langmuir</i> , 2014 , 30, 14591-6	4	20
317	Vortex Detection in Vector Fields Using Geometric Algebra. <i>Advances in Applied Clifford Algebras</i> , 2014 , 24, 423-442	1	3
316	Interfacial assembly of protein-polymer nano-conjugates into stimulus-responsive biomimetic protocells. <i>Nature Communications</i> , 2013 , 4, 2239	17.4	316
316 315		7.7	316 7
	Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single	7.7	7
315	Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies. <i>Nanoscale</i> , 2013 , 5, 7161-74 Redox transitions in an electrolyte-free myoglobin fluid. <i>Journal of the American Chemical Society</i> ,	7.7	7
315 314	Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies. <i>Nanoscale</i> , 2013 , 5, 7161-74 Redox transitions in an electrolyte-free myoglobin fluid. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18311-4 Conductive, monodisperse polyaniline nanofibers of controlled length using well-defined	7·7 16.4	7
315 314 313	Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies. <i>Nanoscale</i> , 2013 , 5, 7161-74 Redox transitions in an electrolyte-free myoglobin fluid. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18311-4 Conductive, monodisperse polyaniline nanofibers of controlled length using well-defined cylindrical block copolymer micelles as templates. <i>Chemistry - A European Journal</i> , 2013 , 19, 13030-9 Electrochemical crystallization of spatially organized copper microwire arrays within biomineralized	7·7 16.4 4.8	7 21 25
315 314 313 312	Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies. <i>Nanoscale</i> , 2013 , 5, 7161-74 Redox transitions in an electrolyte-free myoglobin fluid. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18311-4 Conductive, monodisperse polyaniline nanofibers of controlled length using well-defined cylindrical block copolymer micelles as templates. <i>Chemistry - A European Journal</i> , 2013 , 19, 13030-9 Electrochemical crystallization of spatially organized copper microwire arrays within biomineralized (dentine) templates. <i>CrystEngComm</i> , 2013 , 15, 7152 Apoferritin-encapsulated PbS quantum dots significantly inhibit growth of colorectal carcinoma	7·7 16.4 4.8	7 21 25 3
315 314 313 312 311	Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies. <i>Nanoscale</i> , 2013 , 5, 7161-74 Redox transitions in an electrolyte-free myoglobin fluid. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18311-4 Conductive, monodisperse polyaniline nanofibers of controlled length using well-defined cylindrical block copolymer micelles as templates. <i>Chemistry - A European Journal</i> , 2013 , 19, 13030-9 Electrochemical crystallization of spatially organized copper microwire arrays within biomineralized (dentine) templates. <i>CrystEngComm</i> , 2013 , 15, 7152 Apoferritin-encapsulated PbS quantum dots significantly inhibit growth of colorectal carcinoma cells. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 6254-6260	7·7 16.4 4.8 3·3 7·3	7 21 25 3

307	The origins of life: old problems, new chemistries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 155-62	16.4	103
306	Self-organized approach to modeling hydraulic erosion features. <i>Computers and Graphics</i> , 2013 , 37, 280-	-292	2
305	Enzymatically active self-standing protein-polymer surfactant films prepared by hierarchical self-assembly. <i>Advanced Materials</i> , 2013 , 25, 2005-10	24	33
304	Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity. <i>Biomaterials</i> , 2013 , 34, 3559-70	15.6	64
303	Directing chondrogenesis of stem cells with specific blends of cellulose and silk. <i>Biomacromolecules</i> , 2013 , 14, 1287-98	6.9	48
302	Calcium sulfate hemihydrate-mediated crystallization of gypsum on Ca2+-activated cellulose thin films. <i>CrystEngComm</i> , 2013 , 15, 3793-3798	3.3	9
301	Electrostatically gated membrane permeability in inorganic protocells. <i>Nature Chemistry</i> , 2013 , 5, 529-36	6 17.6	190
300	Linear methods for G1, G2, and G3Multi-degree reduction of BZier curves. <i>CAD Computer Aided Design</i> , 2013 , 45, 405-414	2.9	14
299	Artificial cytoskeletal structures within enzymatically active bio-inorganic protocells. <i>Small</i> , 2013 , 9, 357	- 6 2	42
298	Controlled assembly of SbBhanoparticles on silica/polymer nanotubes: insights into the nature of hybrid interfaces. <i>Scientific Reports</i> , 2013 , 3, 1336	4.9	29
297	Isolation of a highly reactive Bheet-rich intermediate of lysozyme in a solvent-free liquid phase. Journal of Physical Chemistry B, 2013 , 117, 8400-7	3.4	22
296	Plasmonic Response of Ag- and Au-Infiltrated Cross-Linked Lysozyme Crystals. <i>Advanced Functional Materials</i> , 2013 , 23, 281-290	15.6	20
295	Mesoscale integration in titania/J-aggregate hybrid nanofibers. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 733-7	16.4	11
294	Systems of creation: the emergence of life from nonliving matter. <i>Accounts of Chemical Research</i> , 2012 , 45, 2131-41	24.3	162
293	Interactions of nanoparticles with purple membrane films. <i>Journal of Materials Chemistry</i> , 2012 , 22, 156.	35	11
292	Stabilization and enhanced reactivity of actinorhodin polyketide synthase minimal complex in polymer-nucleotide coacervate droplets. <i>Chemical Communications</i> , 2012 , 48, 11832-4	5.8	77
291	Polymer/nucleotide droplets as bio-inspired functional micro-compartments. <i>Soft Matter</i> , 2012 , 8, 6004	3.6	76
290	The differential effect of apoferritin-PbS nanocomposites on cell cycle progression in normal and cancerous cells. <i>Journal of Materials Chemistry.</i> 2012 . 22. 660-665		13

289	Fabrication of polypyrrole nano-arrays in lysozyme single crystals. <i>Nanoscale</i> , 2012 , 4, 6710-3	7.7	15
288	Designs for life: protocell models in the laboratory. <i>Chemical Society Reviews</i> , 2012 , 41, 79-85	58.5	191
287	Hyper-thermal stability and unprecedented re-folding of solvent-free liquid myoglobin. <i>Chemical Science</i> , 2012 , 3, 1839	9.4	40
286	A polymer surfactant corona dynamically replaces water in solvent-free protein liquids and ensures macromolecular flexibility and activity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13168-71	16.4	41
285	Liquid viruses by nanoscale engineering of capsid surfaces. <i>Advanced Materials</i> , 2012 , 24, 4557-63	24	23
284	Nematic director-induced switching of assemblies of hexagonally packed gold nanorods. <i>Advanced Materials</i> , 2012 , 24, 4424-9	24	11
283	Contrast in electron-transfer mediation between graphene oxide and reduced graphene oxide. <i>ChemPhysChem</i> , 2012 , 13, 2956-63	3.2	2
282	Cerium oxide nanoparticle-mediated self-assembly of hybrid supramolecular hydrogels. <i>Chemical Communications</i> , 2012 , 48, 7934-6	5.8	26
281	NURBS approximation to the flank-milled surface swept by a cylindrical NC tool. <i>International Journal of Advanced Manufacturing Technology</i> , 2012 , 61, 35-51	3.2	7
2 80	In vitro gene expression and enzyme catalysis in bio-inorganic protocells. <i>Chemical Science</i> , 2011 , 2, 173	19 9.4	83
279	Synthesis of fluorescent coreBhell hydroxyapatite nanoparticles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1250-1254		40
278	Fabrication of functional bioinorganic nanoconstructs by polymer-silica wrapping of individual myoglobin molecules. <i>Nanoscale</i> , 2011 , 3, 1031-6	7.7	7
277	A flexible one-pot route to metal/metal oxide nanocomposites. <i>Green Chemistry</i> , 2011 , 13, 272-275	10	37
276	Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. <i>Nature Chemistry</i> , 2011 , 3, 720-4	17.6	333
275	Tris(8-hydroxyquinolinato)gallium(III)-loaded copolymer micelles as cytotoxic nanoconstructs for cosolvent-free organometallic drug delivery. <i>Small</i> , 2011 , 7, 1635-40	11	4
274	A Generalized Mechanism for Ligand-Induced Dipolar Assembly of Plasmonic Gold Nanoparticle Chain Networks. <i>Advanced Functional Materials</i> , 2011 , 21, 851-859	15.6	80
273	Guest-Molecule-Directed Assembly of Mesostructured Nanocomposite Polymer/Organoclay Hydrogels. <i>Advanced Functional Materials</i> , 2011 , 21, 674-681	15.6	77
272	Hierarchical Self-assembly of Microscale Cog-like Superstructures for Enhanced Performance in Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2011 , 21, 3516-3523	15.6	94

(2010-2011)

271	Bio-inspired complementary photoconductor by porphyrin-coated silicon nanowires. <i>Advanced Materials</i> , 2011 , 23, 3979-83	24	26
270	Cytoskeletal-like supramolecular assembly and nanoparticle-based motors in a model protocell. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9343-7	16.4	50
269	Engineered synthetic virus-like particles and their use in vaccine delivery. ChemBioChem, 2011, 12, 100-	93.8	46
268	Supramolecular hydrogels derived from silver ion-mediated self-assembly of 5?-guanosine monophosphate. <i>Soft Matter</i> , 2011 , 7, 8120	3.6	50
267	Electrospun mats of PVP/ACP nanofibres for remineralization of enamel tooth surfaces. <i>CrystEngComm</i> , 2011 , 13, 3692	3.3	32
266	Liquid proteinsa new frontier for biomolecule-based nanoscience. ACS Nano, 2011, 5, 6085-91	16.7	47
265	Iterative process for G2-multi degree reduction of Bbier curves. <i>Applied Mathematics and Computation</i> , 2011 , 217, 8126-8133	2.7	22
264	Numerical Verification of CNC Machine Simulations. <i>Computer-Aided Design and Applications</i> , 2011 , 8, 507-518	1.4	
263	Reversible dioxygen binding in solvent-free liquid myoglobin. <i>Nature Chemistry</i> , 2010 , 2, 622-6	17.6	89
262	Biopolymer-mediated synthesis of anisotropic piezoelectric nanorods. <i>Chemical Communications</i> , 2010 , 46, 4887-9	5.8	8
261	Alginate-mediated routes to the selective synthesis of complex metal oxide nanostructures. CrystEngComm, 2010 , 12, 1410	3.3	47
260	From natural attapulgite to mesoporous materials: methodology, characterization and structural evolution. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 2390-8	3.4	113
259	One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. <i>CrystEngComm</i> , 2010 , 12, 872-879	3.3	226
258	Self-Assembly of Electrically Conducting Biopolymer Thin Films by Cellulose Regeneration in Gold Nanoparticle Aqueous Dispersions. <i>Chemistry of Materials</i> , 2010 , 22, 2675-2680	9.6	33
257	Ligand-mediated self-assembly of polymer-enveloped gold nanoparticle chains and networks. <i>Chemical Communications</i> , 2010 , 46, 7602-4	5.8	28
256	Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles. <i>Nanoscale</i> , 2010 , 2, 2400-5	7.7	16
255	Formation of cobalt-Prussian Blue nanoparticles in a biopolymer matrix. <i>Nanoscale</i> , 2010 , 2, 2370-2	7.7	16
254	Mesostructured silica hybrids from liquid polyelectrolyteBurfactantBminosilanol complexes. Journal of Materials Chemistry, 2010 , 20, 5736		2

253	Assembly of poly(methacrylate)/purple membrane lamellar nanocomposite films by intercalation and in situ polymerisation. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9037		7
252	Microemulsion-mediated self-assembly and silicification of mesostructured ferritin nanocrystals. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4100-3	16.4	18
251	Spontaneous patterning and nanoparticle encapsulation in carboxymethylcellulose/alginate/dextran hydrogels and sponges. <i>Materials Science and Engineering C</i> , 2010 , 30, 352-356	8.3	19
250	Machine models and tool motions for simulating five-axis machining. <i>CAD Computer Aided Design</i> , 2010 , 42, 231-237	2.9	19
249	Inhibition of hydroxyapatite nanoparticle-induced osteogenic activity in skeletal cells by adsorption of serum proteins. <i>Small</i> , 2010 , 6, 1986-91	11	15
248	Synthetic viruslike particles and hybrid constructs based on lipopeptide self-assembly. <i>Small</i> , 2010 , 6, 1191-6	11	14
247	Extending the A-patch single sheet conditions to enable the tessellation of algebraics 2009,		1
246	Targeted WebCAD. Computer-Aided Design and Applications, 2009, 6, 639-644	1.4	
245	Bone-like Resorbable Silk-based Scaffolds for Load-bearing Osteoregenerative Applications. <i>Advanced Materials</i> , 2009 , 21, 75-78	24	71
244	Fabrication of Continuous and Segmented Polymer/Metal Oxide Nanowires Using Cylindrical Micelles and Block Comicelles as Templates. <i>Advanced Materials</i> , 2009 , 21, 1805-1808	24	94
243	Fabrication of Graphene P olymer Nanocomposites With Higher-Order Three-Dimensional Architectures. <i>Advanced Materials</i> , 2009 , 21, 2180-2184	24	539
242	Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites using DNA. <i>Advanced Materials</i> , 2009 , 21, 3159-3164	24	425
241	Chemical infiltration during atomic layer deposition: metalation of porphyrins as model substrates. Angewandte Chemie - International Edition, 2009 , 48, 4982-5	16.4	41
240	Augmentation of skeletal tissue formation in impaction bone grafting using vaterite microsphere biocomposites. <i>Biomaterials</i> , 2009 , 30, 1918-27	15.6	30
239	Hydroxyapatite pattern formation in PVA gels. <i>Journal of Materials Science</i> , 2009 , 44, 5806-5814	4.3	11
238	The biocompatibility of apoferritin-encapsulated PbS quantum dots. <i>Small</i> , 2009 , 5, 1738-41	11	38
237	Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. <i>Nature Materials</i> , 2009 , 8, 781-92	27	775
236	Nanoparticles can cause DNA damage across a cellular barrier. <i>Nature Nanotechnology</i> , 2009 , 4, 876-83	28.7	303

(2008-2009)

235	Template-free hydrothermal fabrication of hierarchically organized EAlOOH hollow microspheres. <i>Microporous and Mesoporous Materials</i> , 2009 , 122, 42-47	5.3	95
234	The effect of pre-coating human bone marrow stromal cells with hydroxyapatite/amino acid nanoconjugates on osteogenesis. <i>Biomaterials</i> , 2009 , 30, 3174-82	15.6	15
233	A general strategy for the biosynthesis of gold nanoparticles by traditional Chinese medicines and their potential application as catalysts. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 1050-4	4.5	38
232	Nucleotide-Based Templates for Nanoparticle Production E xploiting Multiple Noncovalent Interactions. <i>Chemistry of Materials</i> , 2009 , 21, 3270-3274	9.6	10
231	Fabrication of Metal and Metal Oxide Sponges by Self-Bubbled Triton X-45 Hydrogel Templates. Journal of Physical Chemistry C, 2009 , 113, 19871-19874	3.8	20
230	Structure and properties of silicified purple membrane thin films. <i>Biomacromolecules</i> , 2009 , 10, 2767-71	l 6.9	8
229	Synergetic Codoping in Fluorinated Ti1⊠ZrxO2 Hollow Microspheres. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10712-10717	3.8	74
228	Facile preparation and processing of aqueous dispersions of tris(8-hydroxyquinoline) aluminium(III) photoluminescent nanoparticles. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3950		20
227	Immobilisation and encapsulation of functional protein-inorganic constructs. <i>Molecular BioSystems</i> , 2009 , 5, 744-9		9
226	Self-organized structural hierarchy in mixed polysaccharide sponges. <i>Soft Matter</i> , 2009 , 5, 3081	3.6	19
225	Membrane stabilization and transformation in organoclay⊠esicle hybrid constructs. <i>Soft Matter</i> , 2009 , 5, 2183	3.6	2
224	Solvent-free protein liquids and liquid crystals. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 624	1 2-6 .4	105
223	Fabrication of ice-templated macroporous TiO2IIhitosan scaffolds for photocatalytic applications. Journal of Materials Chemistry, 2009 , 19, 8478		40
222	Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. Journal of Materials Chemistry, 2008 , 18, 4796		89
221	Self-assembly of biothorganic nanohybrids using organoclay building blocks. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4605		84
220	Novel proteininorganic nanoparticles prepared by inorganic replication of self-assembled clathrin cages and triskelia. <i>Soft Matter</i> , 2008 , 4, 2054	3.6	12
219	Templating silica nanostructures on rationally designed self-assembled peptide fibers. <i>Langmuir</i> , 2008 , 24, 11778-83	4	75
218	Flank Millable Surface Design with Conical and Barrel Tools. <i>Computer-Aided Design and Applications</i> , 2008 , 5, 461-470	1.4	11

217	Parametric triangular B⊠ier surface interpolation with approximate continuity 2008 ,		9
216	Genetic manipulation of human mesenchymal progenitors to promote chondrogenesis using "bead-in-bead" polysaccharide capsules. <i>Biomaterials</i> , 2008 , 29, 58-65	15.6	54
215	Accuracy improvement method for flank milling surface design. <i>International Journal of Advanced Manufacturing Technology</i> , 2008 , 38, 218-228	3.2	3
214	Spontaneous formation of a tungsten trioxide sphere-in-shell superstructure by chemically induced self-transformation. <i>Small</i> , 2008 , 4, 87-91	11	173
213	Life as a nanoscale phenomenon. Angewandte Chemie - International Edition, 2008, 47, 5306-20	16.4	241
212	Emergent hybrid nanostructures based on non-equilibrium block copolymer self-assembly. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 9476-9	16.4	16
211	Structural Evolution of Superconductor Nanowires in Biopolymer Gels. <i>Advanced Materials</i> , 2008 , 20, 1782-1786	24	56
210	Aqueous Near-Infrared Fluorescent Composites Based on Apoferritin-Encapsulated PbS Quantum Dots. <i>Advanced Materials</i> , 2008 , 20, 3592-3596	24	72
209	Influence of polymer co-intercalation on guest release from aminopropyl-functionalized magnesium phyllosilicate mesolamellar nanocomposites. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3894		47
208	Silk inverse opals from template-directed Bheet transformation of regenerated silk fibroin. <i>Soft Matter</i> , 2007 , 3, 1377-1380	3.6	28
207	Novel bioinorganic nanostructures based on mesolamellar intercalation or single-molecule wrapping of DNA using organoclay building blocks. <i>Nano Letters</i> , 2007 , 7, 2660-5	11.5	86
206	Aerosol-Mediated Fabrication of Porous Thin Films Using Ultrasonic Nebulization. <i>Chemistry of Materials</i> , 2007 , 19, 503-508	9.6	24
205	Hierarchical self-assembly in molecularly ordered phenylene-bridged mesoporous organosilica nanofilaments. <i>ChemPhysChem</i> , 2007 , 8, 2363-6	3.2	14
204	An ex vivo model for chondrogenesis and osteogenesis. <i>Biomaterials</i> , 2007 , 28, 2839-49	15.6	36
203	Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles. <i>Small</i> , 2007 , 3, 1477-81	11	59
202	Nanoscale organization of cadmium sulfide quantum dots on structurally persistent dendro-calixarene micelles. <i>Small</i> , 2007 , 3, 2057-60	11	9
201	Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres. <i>Chemistry of Materials</i> , 2007 , 19, 4327-4334	9.6	418
200	Single controlled axis lathe mill. <i>International Journal of Advanced Manufacturing Technology</i> , 2007 , 32, 55-65	3.2	7

199	Flank Millable Surfaces Generated via Polynomial Composition. <i>Computer-Aided Design and Applications</i> , 2007 , 4, 41-48	1.4	1
198	Approximate continuity for parametric B⊠ier patches 2007 ,		4
197	On the empirical limits of billboard rotation 2007 ,		1
196	Why geometric algebra? 2007 , 1-19		63
195	Fabrication of Porous Titania (Brookite) Microparticles with Complex Morphology by Sol G el Replication of Pollen Grains. <i>Chemistry of Materials</i> , 2006 , 18, 598-600	9.6	83
194	Phase evolution in the alkane P123 Water TEOS quadru-component system: a feasible route to different complex mesostructured materials. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1507-1510		34
193	Synthesis of cerium/cobalt phosphate nanostructures in catanionic reverse micelles. <i>Soft Matter</i> , 2006 , 2, 603-607	3.6	13
192	Strategies to promote chondrogenesis and osteogenesis from human bone marrow cells and articular chondrocytes encapsulated in polysaccharide templates. <i>Tissue Engineering</i> , 2006 , 12, 2789-99		45
191	Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media. Journal of Physical Chemistry B, 2006 , 110, 1111-3	3.4	60
190	Mineralized polysaccharide capsules as biomimetic microenvironments for cell, gene and growth factor delivery in tissue engineering. <i>Soft Matter</i> , 2006 , 2, 732-737	3.6	39
189	CaCO3/Biopolymer Composite Films Prepared Using Supercritical CO2. <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & Composite Films Prepared Using Supercritical CO2</i> . <i>Industrial & </i>	3.9	28
188	Additive-Mediated Crystallization of Complex Calcium Carbonate Superstructures in Reverse Microemulsions. <i>Chemistry of Materials</i> , 2006 , 18, 3557-3561	9.6	57
187	Flank milling of a ruled surface with conical tools\(\text{ln} \) optimization approach. <i>International Journal of Advanced Manufacturing Technology</i> , 2006 , 29, 1115-1124	3.2	26
186	A Blossoming Development of Splines. <i>Synthesis Lectures on Computer Graphics and Animation</i> , 2006 , 1, 1-108		1
185	Polyelectrolyte-mediated synthesis and self-assembly of silicalite nanocrystals into linear chain superstructures. <i>Journal of Materials Chemistry</i> , 2005 , 15, 111		9
184	Influence of surfactant assembly on the formation of calcium phosphate materials model for dental enamel formation. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3317		101
183	Programmed assembly of multi-layered protein/nanoparticle-carbon nanotube conjugates. <i>Chemical Communications</i> , 2005 , 4952-4	5.8	28
182	Fabrication of functional proteinBrganoclay lamellar nanocomposites by biomolecule-induced assembly of exfoliated aminopropyl-functionalized magnesium phyllosilicates. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3838		84

181	Synthesis of tri-calcium phosphate sponges by interfacial deposition and thermal transformation of self-supporting calcium phosphate films. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1043		25
180	Fabrication of CaCO3Biopolymer thin films using supercritical carbon dioxide. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1134-1136		40
179	Template-directed synthesis of silica-coated J-aggregate nanotapes. <i>Chemical Communications</i> , 2005 , 3688-90	5.8	40
178	Synthesis of Calcium Phosphate Nanofilaments in Reverse Micelles. <i>Chemistry of Materials</i> , 2005 , 17, 2765-2770	9.6	88
177	Oxygen isotope fractionation during synthesis of CaMg-carbonate and implications for sedimentary dolomite formation. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 4665-4674	5.5	55
176	Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages. <i>Nano Letters</i> , 2005 , 5, 1457-61	11.5	138
175	DNA-driven assembly of mesoporous silica/gold satellite nanostructures. <i>Small</i> , 2005 , 1, 103-6	11	22
174	Error measurements for flank milling. CAD Computer Aided Design, 2005, 37, 1459-1468	2.9	25
173	Fabrication of hydroxyapatite sponges by dextran sulphate/amino acid templating. <i>Biomaterials</i> , 2005 , 26, 6652-6	15.6	37
172	Spongelike Macroporous TiO2 Monoliths Prepared from Starch Gel Template. <i>Journal of Sol-Gel Science and Technology</i> , 2004 , 32, 99-105	2.3	37
171	Promotion of fluorapatite crystallization by soluble-matrix proteins from Lingula anatina shells. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 885-8	16.4	33
170	Synthesis and self-assembly of organoclay-wrapped biomolecules. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4928-33	16.4	112
169	Preparation of higher-order zeolite materials by using dextran templating. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 6691-5	16.4	33
168	Triple tangent flank milling of ruled surfaces. <i>CAD Computer Aided Design</i> , 2004 , 36, 289-296	2.9	63
167	Microemulsion-based synthesis of stacked calcium carbonate (calcite) superstructures. <i>Chemical Communications</i> , 2004 , 2182-3	5.8	50
166	Morphological control of BaSO4 microstructures by double hydrophilic block copolymer mixtures. Journal of Materials Chemistry, 2004 , 14, 2269-2276		68
165	DNA-directed assembly of multifunctional nanoparticle networks using metallic and bioinorganic building blocks. <i>Journal of Materials Chemistry</i> , 2004 , 14, 2260		55
164	Stimulation of human bone marrow stromal cells using growth factor encapsulated calcium carbonate porous microspheres. <i>Journal of Materials Chemistry</i> , 2004 , 14, 2206		41

(2003-2004)

163	Single-step fabrication of drug-encapsulated inorganic microspheres with complex form by sonication-induced nanoparticle assembly. <i>Chemical Communications</i> , 2004 , 576-7	5.8	27
162	A New Paradigm for Woodworking with NC Machines. <i>Computer-Aided Design and Applications</i> , 2004 , 1, 217-222	1.4	3
161	Spontaneous template-free assembly of ordered macroporous titania. <i>Chemical Communications</i> , 2004 , 568-9	5.8	105
160	Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. <i>Journal of Materials Chemistry</i> , 2004 , 14, 2277		164
159	Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 2350-65	16.4	1600
158	Flank milling with flat end milling cutters. CAD Computer Aided Design, 2003, 35, 293-300	2.9	93
157	Dextran templating for the synthesis of metallic and metal oxide sponges. <i>Nature Materials</i> , 2003 , 2, 386-90	27	283
156	Characterization of the Structure of Mesoporous Thin Films Grown at the Air/Water Interface Using X-ray Surface Techniques. <i>Langmuir</i> , 2003 , 19, 2639-2642	4	18
155	Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates. <i>Nano Letters</i> , 2003 , 3, 413-417	11.5	507
154	Biomolecular inorganic materials chemistry. <i>Current Opinion in Solid State and Materials Science</i> , 2003 , 7, 273-281	12	54
153	Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. <i>International Journal of Biological Macromolecules</i> , 2003 , 32, 199-204	7.9	277
152	Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. <i>Journal of Structural Biology</i> , 2003 , 142, 327-33	3.4	216
151	Synthesis of titania hollow microspheres using non-aqueous emulsions. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1112-1114		117
150	Controlled Assembly of Nanoparticle-Containing Gold and Silica Microspheres and Silica/Gold Nanocomposite Spheroids with Complex Form. <i>Chemistry of Materials</i> , 2003 , 15, 528-535	9.6	26
149	Synthesis and shape modification of organo-functionalised silica nanoparticles with ordered mesostructured interiors. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1023-1029		108
148	Morphosynthesis of complex inorganic forms using pollen grain templates. <i>Chemical Communications</i> , 2003 , 2784-5	5.8	167
147	Synthesis of mesoporous silica by solgel mineralisation of cellulose nanorod nematic suspensions. Journal of Materials Chemistry, 2003 , 13, 696-699		169
146	A novel route to highly porous bioactive silica gels. <i>Journal of Materials Chemistry</i> , 2003 , 13, 186-190		22

145	Nucleation of MCM-41 Nanoparticles by Internal Reorganization of Disordered and Nematic-Like SilicaBurfactant Clusters. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 2151	16.4	108
144	Morphosynthesis of Octacalcium Phosphate Hollow Microspheres by Polyelectrolyte-Mediated Crystallization. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 2163	16.4	117
143	Chiral templating of silica-lipid lamellar mesophase with helical tubular architecture. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 2988-91	16.4	152
142	Adjusting control points to achieve continuity. <i>Computer Aided Geometric Design</i> , 2002 , 19, 589-602	1.2	3
141	Electron diffraction studies of the calcareous skeletons of bryozoans. <i>Journal of Inorganic Biochemistry</i> , 2002 , 88, 410-9	4.2	16
140	Generalization of the imprint method to general surfaces of revolution for NC machining. <i>CAD Computer Aided Design</i> , 2002 , 34, 373-378	2.9	38
139	Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. Journal of Materials Chemistry, 2002 , 12, 1765-1770		835
138	Concentration-Dependent Formation Mechanisms in Mesophase SilicaBurfactant Films. <i>Langmuir</i> , 2002 , 18, 9838-9844	4	39
137	Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films. <i>Chemistry of Materials</i> , 2002 , 14, 1369-1375	9.6	208
136	Liquid crystalline assemblies of ordered gold nanorods. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2909-7	2912	179
135	Molecule-Based Magnetic Nanoparticles: Synthesis of Cobalt Hexacyanoferrate, Cobalt Pentacyanonitrosylferrate, and Chromium Hexacyanochromate Coordination Polymers in Water-in-Oil Microemulsions. <i>Nano Letters</i> , 2002 , 2, 225-229	11.5	226
134	Biomineral-inspired fabrication of semi-permeable calcium phosphatepolysaccharide microcapsules. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2178-2180		40
133	Structural Evolution of SurfactantBilica Film-Forming Solutions, Investigated Using Small-Angle Neutron Scattering. <i>Chemistry of Materials</i> , 2002 , 14, 4292-4299	9.6	27
132	Interfacial oxidation of decamethylferrocene by hexacyanoferrate: synthesis and characterization of [FeIII(IIC5Me5)2]3[FeIII(CN)6][I2CH2Cl2[I6H2O. <i>Polyhedron</i> , 2001 , 20, 2467-2472	2.7	7
131	Structural studies on surfactant-templated silica films grown at the air/water interface. <i>Microporous and Mesoporous Materials</i> , 2001 , 44-45, 661-670	5.3	34
130	Formation of BaSO4 fibres with morphological complexity in aqueous polymer solutions. <i>Chemistry - A European Journal</i> , 2001 , 7, 3526-32	4.8	148
129	Synthesis of Nanophase Iron Oxide in Lumazine Synthase Capsids. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 442-445	16.4	65
128	DNA-driven self-assembly of gold nanorods. <i>Chemical Communications</i> , 2001 , 1264-1265	5.8	246

127	Interfacial synthesis of hollow microspheres of mesostructured silica. <i>Chemical Communications</i> , 2001 , 2028-9	5.8	253
126	Facile synthesis of hollow silica microspheres. <i>Journal of Materials Chemistry</i> , 2001 , 11, 1968-1971		159
125	Template-Directed Assembly Using Nanoparticle Building Blocks: A Nanotectonic Approach to Organized Materials. <i>Chemistry of Materials</i> , 2001 , 13, 3218-3226	9.6	200
124	Higher Order Construction of Molecule-Based Magnets. <i>Chemistry of Materials</i> , 2001 , 13, 4408-4410	9.6	17
123	Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions We thank the Swiss National Science Foundation for a postdoctoral fellowship to S.V. and the University of Bristol for a postgraduate studentship to M.L. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 1793-1796	16.4	323
122	Template Mineralization of Ordered Macroporous ChitinBilica Composites Using a Cuttlebone-Derived Organic Matrix. <i>Chemistry of Materials</i> , 2000 , 12, 2835-2837	9.6	160
121	Bacterial templating of zeolite fibres with hierarchical structure. Chemical Communications, 2000, 781-7	7852 8	138
120	Emergence of Morphological Complexity in BaSO4Fibers Synthesized in AOT Microemulsions. <i>Langmuir</i> , 2000 , 16, 7088-7094	4	170
119	In situ Brewster angle microscopy and surface pressure studies on the interfacial growth of mesostructured silica thin films. <i>Chemical Communications</i> , 2000 , 773-774	5.8	13
118	Crystal tectonics: Chemical construction and self-organization beyond the unit cell. <i>Dalton Transactions RSC</i> , 2000 , 3753-3763		28
117	Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using CoreBhell Building Blocks. <i>Chemistry of Materials</i> , 2000 , 12, 2832-2834	9.6	272
116	Cocondensation of Organosilica Hybrid Shells on Nanoparticle Templates: A Direct Synthetic Route to Functionalized CoreBhell Colloids. <i>Langmuir</i> , 2000 , 16, 1454-1456	4	139
115	Synthesis of hierarchically ordered dye-functionalised mesoporous silica with macroporous architecture by dual templating. <i>Journal of Materials Chemistry</i> , 2000 , 10, 2105-2108		119
114	Cubic precision Clough-Tocher interpolation. <i>Computer Aided Geometric Design</i> , 1999 , 16, 85-88	1.2	18
113	Synthesis and characterization of hydrophobic ferritin proteins. <i>Journal of Inorganic Biochemistry</i> , 1999 , 76, 187-95	4.2	49
112	Organization of Inorganic Nanoparticles Using BiotinBtreptavidin Connectors. <i>Chemistry of Materials</i> , 1999 , 11, 23-26	9.6	127
111	Morphosynthesis of Calcium Carbonate (Vaterite) Microsponges. Advanced Materials, 1999, 11, 324-328	3 24	235
110	Directed Self-Assembly of Nanoparticles into Macroscopic Materials Using AntibodyAntigen Recognition. <i>Advanced Materials</i> , 1999 , 11, 449-452	24	296

109	Transparent thin films and monoliths prepared from dye-functionalized ordered silica mesostructures. <i>Journal of Materials Chemistry</i> , 1999 , 9, 2279-2281		105
108	Template-directed synthesis of bi-functionalized organo-MCM-41 and phenyl-MCM-48 silica mesophases. <i>Chemical Communications</i> , 1999 , 201-202	5.8	125
107	Organic Crystal Templating of Hollow Silica Fibers. <i>Chemistry of Materials</i> , 1999 , 11, 3021-3024	9.6	102
106	Coccolith ultrastructure and biomineralisation. <i>Journal of Structural Biology</i> , 1999 , 126, 195-215	3.4	232
105	Inorganic©rganic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus 1999 , 11, 253		6
104	Sorption of Nitrogen, Water Vapor, and Benzene by a Phenyl-Modified MCM-41 Sorbent. <i>Journal of Colloid and Interface Science</i> , 1998 , 201, 220-222	9.3	29
103	Morphosynthesis of Macroporous Silica Frameworks in Bicontinuous Microemulsions. <i>Advanced Materials</i> , 1998 , 10, 151-154	24	41
102	Fabrication of Magnetic Spider Silk and Other Silk-Fiber Composites Using Inorganic Nanoparticles. <i>Advanced Materials</i> , 1998 , 10, 801-805	24	88
101	Inorganic/Organic Mesostructures with Complex Architectures: Precipitation of Calcium Phosphate in the Presence of Double-Hydrophilic Block Copolymers. <i>Chemistry - A European Journal</i> , 1998 , 4, 2493-	2 ⁴ 5800	195
100	Aragonite⊞ydroxyapatite Conversion in Gastropod (Abalone) Nacre. <i>Chemistry of Materials</i> , 1998 , 10, 3813-3824	9.6	102
99	Hydrophobic proteins: synthesis and characterisation of organic-soluble alkylated ferritins. <i>Chemical Communications</i> , 1998 , 1621-1622	5.8	22
98	Hybrid lamellar nanocomposites based on organically functionalized magnesium phyllosilicate clays with interlayer reactivity. <i>Journal of Materials Chemistry</i> , 1998 , 8, 1927-1932		109
97	Covalent coupling of an organic chromophore into functionalized MCM-41 mesophases by template-directed co-condensation. <i>Chemical Communications</i> , 1998 , 1825-1826	5.8	105
96	Biomimetic Synthesis and Characterization of Magnetic Proteins (Magnetoferritin). <i>Chemistry of Materials</i> , 1998 , 10, 279-285	9.6	179
95	Brittle Bacteria: A Biomimetic Approach to the Formation of Fibrous Composite Materials. <i>Chemistry of Materials</i> , 1998 , 10, 2516-2524	9.6	55
94	Elastic Magnets: Template-Controlled Mineralization of Iron Oxide Colloids in a Sponge-like Gel Matrix 1998 , 10, 237		2
93	An optimal algorithm for expanding the composition of polynomials. <i>ACM Transactions on Graphics</i> , 1997 , 16, 155-178	7.6	18
92	Biomineralization: the form(id)able part of bioinorganic chemistry!*. <i>Journal of the Chemical Society Dalton Transactions</i> , 1997 , 3953-3962		86

91	Synthesis, Characterization, and Reactivity of Layered Inorganic Drganic Nanocomposites Based on 2:1 Trioctahedral Phyllosilicates. <i>Chemistry of Materials</i> , 1997 , 9, 1071-1073	9.6	152
90	Sol G el Synthesis of Organized Matter. <i>Chemistry of Materials</i> , 1997 , 9, 2300-2310	9.6	392
89	Synthesis of Barium Sulfate Nanoparticles and Nanofilaments in Reverse Micelles and Microemulsions. <i>Chemistry of Materials</i> , 1997 , 9, 1819-1828	9.6	231
88	Determination of the preexponential frequency factor for superparamagnetic maghemite particles in magnetoferritin. <i>Journal of Geophysical Research</i> , 1997 , 102, 22671-22680		42
87	Synthesis and characterization of orderedorganoBilicaBurfactant mesophases with functionalizedMCM-41-type architecture. <i>Chemical Communications</i> , 1997 , 1769-1770	5.8	260
86	Bioinorganic clays: synthesis and characterization of amino- andpolyamino acid intercalated layered double hydroxides. <i>Journal of Materials Chemistry</i> , 1997 , 7, 1623-1629		234
85	Atomic force microscopy of synthetic barite microcrystals. <i>Journal of Crystal Growth</i> , 1997 , 172, 231-248	81.6	15
84	Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. <i>Nature</i> , 1997 , 385, 420-423	50.4	511
83	Template-directed synthesis of aragonite under supramolecular hydrogen-bonded langmuir monolayers. <i>Advanced Materials</i> , 1997 , 9, 124-127	24	141
82	Synthesis of cellular inorganic films from self-organized Media. <i>Advanced Materials</i> , 1997 , 9, 658-662	24	28
81	Synthesis of hybrid inorganic@rganic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. <i>Chemical Communications</i> , 1996 , 1367-1368	5.8	580
80	Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls. <i>Chemistry of Materials</i> , 1996 , 8, 679-690	9.6	202
79	Chemical Synthesis of Microskeletal Calcium Phosphate in Bicontinuous Microemulsions. <i>Chemistry of Materials</i> , 1996 , 8, 1944-1953	9.6	67
78	Spatial organization and patterning of gold nanoparticles on self-assembled biolipid tubular templates. <i>Chemical Communications</i> , 1996 , 321	5.8	76
77	Fullerates: interaction of divalent metal ions with Langmuir monolayers and multilayers of mono-substituted C60halonic acid. <i>Chemical Communications</i> , 1996 , 611-612	5.8	12
76	Skeletons on the brain. <i>Advanced Materials</i> , 1996 , 8, 183-183	24	2
75	Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites. <i>Advanced Materials</i> , 1996 , 8, 928-932	2 24	254
74	Synthesis of inorganic materials with complex form. <i>Nature</i> , 1996 , 382, 313-318	50.4	1031

73	Fabrication of hollow porous shells of calcium carbonate from self-organizing media. <i>Nature</i> , 1995 , 377, 320-323	50.4	366
72	Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. <i>Journal of Inorganic Biochemistry</i> , 1995 , 58, 59-68	4.2	172
71	Habit modification in synthetic crystals of aragonite and vaterite. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 1031		38
70	Biomineralization and biomimetic materials chemistry. <i>Journal of Materials Chemistry</i> , 1995 , 5, 935		199
69	Initial assessment of magnetoferritin biokinetics and proton relaxation enhancement in rats. <i>Academic Radiology</i> , 1995 , 2, 871-8	4.3	34
68	Interaction of Poly(.alpha.,.betaaspartate) with Octadecylamine Monolayers: Adsorption Behavior and Effects on CaCO3 Crystallization. <i>Langmuir</i> , 1995 , 11, 3130-3136	4	38
67	Computing values and derivatives of Bier and B-spline tensor products. <i>Computer Aided Geometric Design</i> , 1995 , 12, 107-110	1.2	7
66	Magnetoferritin: characterization of a novel superparamagnetic MR contrast agent. <i>Journal of Magnetic Resonance Imaging</i> , 1994 , 4, 497-505	5.6	147
65	Self-assembled microstructures from 1,2-ethanediol suspensions of pure and binary mixtures of neutral and acidic biological galactosylceramides. <i>Chemistry and Physics of Lipids</i> , 1994 , 69, 51-64	3.7	26
64	Template-directed nucleation and growth of inorganic materials. Advanced Materials, 1994, 6, 9-20	24	273
63	Flat pearls from biofabrication of organized composites on inorganic substrates. <i>Nature</i> , 1994 , 371, 49-5	5 9 0.4	201
62	Further characterisation of forms of haemosiderin in iron-overloaded tissues. <i>FEBS Journal</i> , 1994 , 225, 187-94		25
61	Molecular Construction of Oriented Inorganic Materials: Controlled Nucleation of Calcite and Aragonite under Compressed Langmuir Monolayers. <i>Chemistry of Materials</i> , 1994 , 6, 311-318	9.6	163
60	Polymer-mediated crystallisation of inorganic solids: calcite nucleation on the surfaces of inorganic polymers. <i>Journal of Materials Chemistry</i> , 1994 , 4, 1387		11
59	Magnetoferritin. <i>Investigative Radiology</i> , 1994 , 29, S214-S216	10.1	39
58	Structural studies of lipid fibers formed by sphingosine. <i>Lipids and Lipid Metabolism</i> , 1993 , 1166, 154-62		10
57	Crystallization at Inorganic-organic Interfaces: Biominerals and Biomimetic Synthesis. <i>Science</i> , 1993 , 261, 1286-92	33.3	630
56	Dalton perspectives. Biomineralization: the hard part of bioinorganic chemistry!. <i>Journal of the Chemical Society Dalton Transactions</i> , 1993 , 1		69

55	Characterization of the manganese core of reconstituted ferritin by x-ray absorption spectroscopy. Journal of the American Chemical Society, 1993 , 115, 8471-8472	16.4	52
54	Influence of low-molecular-weight and macromolecular organic additives on the morphology of calcium carbonate. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1993 , 89, 2891		165
53	Functional composition algorithms via blossoming. ACM Transactions on Graphics, 1993, 12, 113-135	7.6	67
52	Influence of Membrane Composition on the Intravesicular Precipitation of Nanophase Gold Particles. <i>Journal of Colloid and Interface Science</i> , 1993 , 161, 66-71	9.3	27
51	Polymer-mediated crystallization of inorganic solids: Calcite nucleation on poly(organosiloxane) surfaces. <i>Advanced Materials</i> , 1993 , 5, 49-51	24	13
50	Influence of monosaccharides and related molecules on the morphology of hydroxyapatite. <i>Journal of Crystal Growth</i> , 1993 , 133, 1-12	1.6	80
49	Template mineralization of self-assembled anisotropic lipid microstructures. <i>Nature</i> , 1993 , 364, 430-433	50.4	291
48	Molecular tectonics in biomineralization and biomimetic materials chemistry. <i>Nature</i> , 1993 , 365, 499-509	550.4	1046
47	Fe304 and Fe3S4 in a bacterium. <i>Nature</i> , 1993 , 366, 218-218	50.4	112
	Overproduction, purification and characterization of the Escherichia coli ferritin. FEBS Journal, 1993		
46	, 218, 985-95		63
46			63 7 ²
	, 218, 985-95 Structure and composition of ferritin cores from pea seed (Pisum sativum). <i>BBA - Proteins and</i>	4	
45	Structure and composition of ferritin cores from pea seed (Pisum sativum). BBA - Proteins and Proteomics, 1993, 1161, 91-6 Template-directed inorganic crystallization: oriented nucleation of barium sulfate under Langmuir monolayers of an aliphatic long chain phosphonate. Langmuir, 1992, 8, 1492-1498 Organic template-directed inorganic crystallization: oriented nucleation of barium sulfate under	4	72
45 44	Structure and composition of ferritin cores from pea seed (Pisum sativum). BBA - Proteins and Proteomics, 1993, 1161, 91-6 Template-directed inorganic crystallization: oriented nucleation of barium sulfate under Langmuir monolayers of an aliphatic long chain phosphonate. Langmuir, 1992, 8, 1492-1498 Organic template-directed inorganic crystallization: oriented nucleation of barium sulfate under		72 92 112
45 44 43	Structure and composition of ferritin cores from pea seed (Pisum sativum). BBA - Proteins and Proteomics, 1993, 1161, 91-6 Template-directed inorganic crystallization: oriented nucleation of barium sulfate under Langmuir monolayers of an aliphatic long chain phosphonate. Langmuir, 1992, 8, 1492-1498 Organic template-directed inorganic crystallization: oriented nucleation of barium sulfate under compressed Langmuir monolayers. Journal of the American Chemical Society, 1992, 114, 4681-4686	16.4	72 92 112
45 44 43 42	Structure and composition of ferritin cores from pea seed (Pisum sativum). BBA - Proteins and Proteomics, 1993, 1161, 91-6 Template-directed inorganic crystallization: oriented nucleation of barium sulfate under Langmuir monolayers of an aliphatic long chain phosphonate. Langmuir, 1992, 8, 1492-1498 Organic template-directed inorganic crystallization: oriented nucleation of barium sulfate under compressed Langmuir monolayers. Journal of the American Chemical Society, 1992, 114, 4681-4686 Crystal assembly and phylogenetic evolution in heterococcoliths. Nature, 1992, 356, 516-518 Chemical and structural characterisation of iron cores of haemosiderins isolated from different	16.4	72 92 112
45 44 43 42 41	Structure and composition of ferritin cores from pea seed (Pisum sativum). BBA - Proteins and Proteomics, 1993, 1161, 91-6 Template-directed inorganic crystallization: oriented nucleation of barium sulfate under Langmuir monolayers of an aliphatic long chain phosphonate. Langmuir, 1992, 8, 1492-1498 Organic template-directed inorganic crystallization: oriented nucleation of barium sulfate under compressed Langmuir monolayers. Journal of the American Chemical Society, 1992, 114, 4681-4686 Crystal assembly and phylogenetic evolution in heterococcoliths. Nature, 1992, 356, 516-518 Chemical and structural characterisation of iron cores of haemosiderins isolated from different sources. FEBS Journal, 1992, 209, 847-50 Crystal recognition at inorganicBrganic interfaces: Nucleation and growth of oriented BaSO4 under Compressed Langmuir Monolayers. Advanced Materials, 1992, 4, 278-282	16.4 50.4	72 92 112 174

37	Making radiosity usable 1991 ,		7
36	Oriented nucleation of CaCo3 from metastable solutions under Langmuir monolayers. <i>Journal of Materials Chemistry</i> , 1991 , 1, 889		19
35	Predicting the influence of growth additives on the morphology of ionic crystals. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 1494		40
34	Oriented crystallization of CaCo3 under compressed monolayers. Part 1. Morphological studies of mature crystals. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1991 , 87, 727-734		101
33	Oriented crystallization of CaCo3 under compressed monolayers. Part 2. Morphology, structure and growth of immature crystals. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1991 , 87, 735-7	43	118
32	Influence of site-directed modifications on the formation of iron cores in ferritin. <i>Journal of Molecular Biology</i> , 1991 , 221, 1443-52	6.5	143
31	Influence of inorganic and organic additives on the tailored synthesis of iron oxides. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1991 , 87, 3875		71
30	Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. <i>Nature</i> , 1990 , 343, 258-261	50.4	398
29	In situ imaging of CdS and ZnS semiconductor particles in surfactant vesicles. <i>Journal of Colloid and Interface Science</i> , 1990 , 138, 295-298	9.3	15
28	Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism and biotechnology. <i>Advances in Microbial Physiology</i> , 1990 , 31, 125-81	4.4	100
27	Selective stabilization of the (001) face of calcite in the presence of lithium. <i>Journal of the Chemical Society Chemical Communications</i> , 1990 , 1789		52
26	Morphological influence of functionalized and non-functionalized Ædicarboxylates on calcite crystallization. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1990 , 86, 1873-1880		182
25	Biochemical studies of the iron cores and polypeptide shells of haemosiderin isolated from patients with primary or secondary haemochromatosis. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 1989 , 993, 131-3	4	16
24	Crystallochemical characterization of magnetic spinels prepared from aqueous solution. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1989 , 85, 3033		50
23	Formation of iron oxides in unilamellar vesicles. <i>Journal of Colloid and Interface Science</i> , 1988 , 122, 326	-33.5	92
22	Synthetic and biological composites formed byin situ precipitation. <i>Journal of Materials Science</i> , 1988 , 23, 3801-3815	4.3	114
21	Molecular recognition in biomineralization. <i>Nature</i> , 1988 , 332, 119-124	50.4	803
20	Controlled crystallization of CaCO3 under stearic acid monolayers. <i>Nature</i> , 1988 , 334, 692-695	50.4	462

19	MBsbauer spectroscopy, electron microscopy and electron diffraction studies of the iron cores in various human and animal haemosiderins. <i>BBA - Proteins and Proteomics</i> , 1988 , 957, 81-90		52	
18	Influence of Silicon and Phosphorus on Structural and Magnetic Properties of Synthetic Goethite and Related Oxides. <i>Clays and Clay Minerals</i> , 1988 , 36, 165-175	2.1	32	
17	Reconstituted and native iron-cores of bacterioferritin and ferritin. <i>Journal of Molecular Biology</i> , 1987 , 198, 405-16	6.5	108	
16	A note on the composition and properties of ferritin iron cores. <i>Journal of Inorganic Biochemistry</i> , 1987 , 31, 1-6	4.2	55	
15	Biotechnological horizons in biomineralization. <i>Trends in Biotechnology</i> , 1987 , 5, 309-314	15.1	5	
14	Biomineralisation: Ein neuer Zweig der bioanorganischen Chemie. <i>Chemie in Unserer Zeit</i> , 1986 , 20, 69-7	60.2	12	
13	Isolation and properties of the complex nonheme-iron-containing cytochrome b557 (bacterioferritin) from Pseudomonas aeruginosa. <i>Journal of Inorganic Biochemistry</i> , 1986 , 28, 329-36	4.2	69	
12	On the nature of boundary-organized biomineralization (BOB). <i>Journal of Inorganic Biochemistry</i> , 1986 , 28, 363-71	4.2	21	
11	Phospholipid vesicles as a model system for biomineralization. <i>Nature</i> , 1986 , 324, 565-567	50.4	175	
10	MBsbauer spectroscopic studies of the cores of human, limpet and bacterial ferritins. <i>BBA</i> - <i>Proteins and Proteomics</i> , 1986 , 870, 127-34		102	
9	Structure and composition of ferritin cores isolated from human spleen, limpet (Patella vulgata) hemolymph and bacterial (Pseudomonas aeruginosa) cells. <i>Journal of Molecular Biology</i> , 1986 , 188, 225-	- 32 5	145	
8	The influence of inorganic phosphate on the crystallization of magnetite (Fe3O4) from aqueous solution. <i>Journal of the Chemical Society Chemical Communications</i> , 1985 , 1713		40	
7	Structure, morphology and crystal growth of bacterial magnetite. <i>Nature</i> , 1984 , 310, 405-407	50.4	251	
6	Precipitation within unilamellar vesicles. Part 1. Studies of silver(I) oxide formation. <i>Journal of the Chemical Society Dalton Transactions</i> , 1983 , 311		36	
5	Precipitation within unilamellar vesicles. Part 2. Membrane control of ion transport. <i>Journal of the Chemical Society Dalton Transactions</i> , 1983 , 771		13	
4	The characterisation of the nature of silica in biological systems. <i>Journal of the Chemical Society Chemical Communications</i> , 1983 , 168		51	
3	A high-resolution electron microscopy examination of domain boundaries in crystals of synthetic goethite. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1983 , 79, 2679		38	
2	Preparation of Ag2O crystallites within phospholipid vesicles and their use in nucleation studies. <i>Journal of the Chemical Society Chemical Communications</i> , 1980 , 634		4	

Location of biological compartments by high resolution n.m.r. spectroscopy and electron microscopy using magnetite-containing vesicles. *Journal of the Chemical Society Chemical Communications*, **1979**, 1067

9