List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1690244/publications.pdf Version: 2024-02-01

DETED I MIEDZIAK

#	Article	IF	CITATIONS
1	Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature, 2022, 603, 271-275.	27.8	114
2	Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catalysis Communications, 2022, 164, 106430.	3.3	5
3	Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates, 2021, 47, 303-324.	2.7	6
4	Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology, 2020, 10, 2082-2091.	4.1	14
5	Enhanced visible-light-driven photocatalytic H ₂ production and Cr(<scp>vi</scp>) reduction of a Znln ₂ S ₄ /MoS ₂ heterojunction synthesized by the biomolecule-assisted microwave heating method. Catalysis Science and Technology, 2020, 10, 2838-2854	4.1	46
6	Cinnamyl Alcohol Oxidation Using Supported Bimetallic Au–Pd Nanoparticles: An Optimization of Metal Ratio and Investigation of the Deactivation Mechanism Under Autoxidation Conditions. Topics in Catalysis, 2020, 63, 99-112.	2.8	8
7	Microwave synthesis of ZnIn ₂ S ₄ /WS ₂ composites for photocatalytic hydrogen production and hexavalent chromium reduction. Catalysis Science and Technology, 2019, 9, 5698-5711.	4.1	52
8	The hydrogenation of levulinic acid to γ-valerolactone over Cu–ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry, 2019, 36, 15-24.	12.9	30
9	The Effects of Dopants on the Cu–ZrO ₂ Catalyzed Hydrogenation of Levulinic Acid. Journal of Physical Chemistry C, 2019, 123, 7879-7888.	3.1	21
10	Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors. Chemical Engineering Journal, 2019, 377, 119976.	12.7	2
11	Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. Catalysis Today, 2019, 333, 154-160.	4.4	11
12	<i>x</i> Ni– <i>y</i> Cu–ZrO ₂ catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Journal of Lithic Studies, 2018, 4, 12-23.	0.5	9
13	The Role of Mg(OH) ₂ in the Soâ€Called "Baseâ€Free―Oxidation of Glycerol with AuPd Catalysts. Chemistry - A European Journal, 2018, 24, 2396-2402.	3.3	23
14	Selective Hydrogenation of Levulinic Acid Using Ru/C Catalysts Prepared by Sol-Immobilisation. Topics in Catalysis, 2018, 61, 833-843.	2.8	21
15	Oxidative Carboxylation of 1-Decene to 1,2-Decylene Carbonate. Topics in Catalysis, 2018, 61, 509-518.	2.8	13
16	Inter-connected and open pore hierarchical TS-1 with controlled framework titanium for catalytic cyclohexene epoxidation. Catalysis Science and Technology, 2018, 8, 2211-2217.	4.1	42
17	One pot microwave synthesis of highly stable AuPd@Pd supported core–shell nanoparticles. Faraday Discussions, 2018, 208, 409-425.	3.2	13
18	Gold as a Catalyst for the Ring Opening of 2,5-Dimethylfuran. Catalysis Letters, 2018, 148, 2109-2116.	2.6	3

#	Article	IF	CITATIONS
19	Cinnamyl alcohol oxidation using supported bimetallic Au–Pd nanoparticles: an investigation of autoxidation and catalysis. Catalysis Science and Technology, 2018, 8, 2987-2997.	4.1	19
20	The effect of ring size on the selective carboxylation of cycloalkene oxides. Catalysis Science and Technology, 2017, 7, 1433-1439.	4.1	2
21	Deactivation Behavior of Supported Gold Palladium Nanoalloy Catalysts during the Selective Oxidation of Benzyl Alcohol in a Micropacked Bed Reactor. Industrial & Engineering Chemistry Research, 2017, 56, 12984-12993.	3.7	9
22	Precious Metals for Environmental Catalysis: Gold. , 2017, , 181-209.		0
23	An investigation into bimetallic catalysts for base free oxidation of cellobiose and glucose. Journal of Chemical Technology and Biotechnology, 2017, 92, 2246-2253.	3.2	15
24	Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science and Technology, 2017, 7, 1928-1936.	4.1	9
25	The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH) ₂ . Catalysis Science and Technology, 2017, 7, 5284-5293.	4.1	87
26	Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry, 2017, 19, 225-236.	9.0	68
27	A micropacked-bed multi-reactor system with in situ raman analysis for catalyst evaluation. Catalysis Today, 2017, 283, 195-201.	4.4	14
28	Bicatalytic Multistep Reactions Enâ€Route to the Oneâ€Pot Total Synthesis of Complex Molecules: Easy Access to Chromene and 1,2â€Đihydroquinoline Derivatives from Simple Substrates. ChemCatChem, 2017, 9, 70-75.	3.7	10
29	The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions, 2016, 188, 427-450.	3.2	41
30	An investigation of the effect of carbon support on ruthenium/carbon catalysts for lactic acid and butanone hydrogenation. Physical Chemistry Chemical Physics, 2016, 18, 17259-17264.	2.8	19
31	The conversion of levulinic acid into γ-valerolactone using Cu–ZrO ₂ catalysts. Catalysis Science and Technology, 2016, 6, 6022-6030.	4.1	40
32	Vinyl chloride monomer production catalysed by gold: A review. Chinese Journal of Catalysis, 2016, 37, 1600-1607.	14.0	47
33	The selective oxidation of n-butanol to butyraldehyde by oxygen using stable Pt-based nanoparticulate catalysts: an efficient route for upgrading aqueous biobutanol. Catalysis Science and Technology, 2016, 6, 4201-4209.	4.1	23
34	Pd–Ru/TiO ₂ catalyst – an active and selective catalyst for furfural hydrogenation. Catalysis Science and Technology, 2016, 6, 234-242.	4.1	108
35	Base-free oxidation of glucose to gluconic acid using supported gold catalysts. Catalysis Science and Technology, 2016, 6, 107-117.	4.1	53
36	Oxidation of Aliphatic Alcohols by Using Precious Metals Supported on Hydrotalcite under Solvent― and Baseâ€Free Conditions. ChemSusChem, 2015, 8, 3314-3322.	6.8	18

#	Article	IF	CITATIONS
37	An Investigation of the Effect of the Addition of Tin to 5 %Pd/TiO ₂ for the Hydrogenation of Furfuryl Alcohol. ChemCatChem, 2015, 7, 2122-2129.	3.7	23
38	Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Applied Catalysis A: General, 2015, 504, 62-73.	4.3	29
39	Selective Oxidation of <i>n</i> â€Butanol Using Goldâ€Palladium Supported Nanoparticles Under Baseâ€Free Conditions. ChemSusChem, 2015, 8, 473-480.	6.8	28
40	Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catalysis Today, 2015, 250, 218-225.	4.4	45
41	Base-free glucose oxidation using air with supported gold catalysts. Green Chemistry, 2014, 16, 3132-3141.	9.0	71
42	Gold-Based Nanoparticulate Catalysts for the Oxidative Esterification of 1,4-Butanediol to Dimethyl Succinate. Topics in Catalysis, 2014, 57, 723-729.	2.8	5
43	Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO ₂ catalyst. Catalysis Science and Technology, 2014, 4, 2280-2286.	4.1	58
44	Initiator-free hydrocarbon oxidation using supported gold nanoparticles. Catalysis Science and Technology, 2014, 4, 908-911.	4.1	24
45	Oxidation of Benzyl Alcohol using in Situ Generated Hydrogen Peroxide. Organic Process Research and Development, 2014, 18, 1455-1460.	2.7	21
46	Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol. Catalysis Science and Technology, 2014, 4, 1313-1322.	4.1	34
47	Solvent-free aerobic oxidation of alcohols using supported gold palladium nanoalloys prepared by a modified impregnation method. Catalysis Science and Technology, 2014, 4, 3120-3128.	4.1	36
48	The direct synthesis of hydrogen peroxide using platinum promoted gold–palladium catalysts. Catalysis Science and Technology, 2014, 4, 3244-3250.	4.1	23
49	Baseâ€Free Oxidation of Glycerol Using Titaniaâ€Supported Trimetallic Au–Pd–Pt Nanoparticles. ChemSusChem, 2014, 7, 1326-1334.	6.8	73
50	Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron, 2014, 70, 6055-6058.	1.9	14
51	Au–Pd nanoalloys supported on Mg–Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol. Dalton Transactions, 2013, 42, 14498.	3.3	91
52	Au–Pd Core–Shell Nanoparticles as Alcohol Oxidation Catalysts: Effect of Shape and Composition. ChemSusChem, 2013, 6, 1858-1862.	6.8	21
53	Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. Catalysis Science and Technology, 2013, 3, 2910.	4.1	10
54	Selective catalytic oxidation using supported gold–platinum and palladium–platinum nanoalloys prepared by sol-immobilisation. Physical Chemistry Chemical Physics, 2013, 15, 10636.	2.8	37

#	Article	IF	CITATIONS
55	The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today, 2013, 203, 139-145.	4.4	58
56	Gold–Palladium Core–Shell Nanocrystals with Size and Shape Control Optimized for Catalytic Performance. Angewandte Chemie - International Edition, 2013, 52, 1477-1480.	13.8	104
57	Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au–Pd nanoparticles. Catalysis Today, 2013, 203, 146-152.	4.4	57
58	The effect of ring size on the selective oxidation of cycloalkenes using supported metal catalysts. Catalysis Science and Technology, 2013, 3, 1531.	4.1	18
59	Control of the selectivity in multi-functional group molecules using supported gold–palladium nanoparticles. Green Chemistry, 2013, 15, 1244.	9.0	10
60	Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au–Pd–Pt nanoparticles. Faraday Discussions, 2013, 162, 365.	3.2	65
61	Solvent Effect and Reactivity Trend in the Aerobic Oxidation of 1,3â€₽ropanediols over Gold Supported on Titania: NMR Diffusion and Relaxation Studies. Chemistry - A European Journal, 2013, 19, 11725-11732.	3.3	46
62	Goldâ€Nanoparticleâ€Based Catalysts for the Oxidative Esterification of 1,4â€Butanediol into Dimethyl Succinate. ChemSusChem, 2013, 6, 1952-1958.	6.8	5
63	The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis, 2012, 55, 1283-1288.	2.8	33
64	Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters, 2012, 142, 1114-1120.	2.6	15
65	Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science and Technology, 2012, 2, 97-104.	4.1	32
66	Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science, 2012, 3, 2965.	7.4	38
67	Solventâ€free Liquidâ€phase Oxidation of 1â€Hexene using Supported Gold Catalysts. ChemCatChem, 2012, 4, 1565-1571.	3.7	18
68	Understanding the Solvent Effect on the Catalytic Oxidation of 1,4â€Butanediol in Methanol over Au/TiO ₂ Catalyst: NMR Diffusion and Relaxation Studies. Chemistry - A European Journal, 2012, 18, 14426-14433.	3.3	50
69	Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews, 2012, 41, 8099.	38.1	971
70	Biotemplated synthesis of catalytic Au–Pd nanoparticles. RSC Advances, 2012, 2, 2217.	3.6	15
71	Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis, 2012, 286, 206-213.	6.2	106
72	Facile removal of stabilizer-ligands from supported gold nanoparticles. Nature Chemistry, 2011, 3, 551-556.	13.6	517

#	Article	IF	CITATIONS
73	Selective Oxidation of Glycerol by Highly Active Bimetallic Catalysts at Ambient Temperature under Baseâ€Free Conditions. Angewandte Chemie - International Edition, 2011, 50, 10136-10139.	13.8	212
74	Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 2011, 163, 47-54.	4.4	73
75	Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 2011, 164, 315-319.	4.4	70
76	Ceria prepared using supercritical antisolvent precipitation: a green support for gold–palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry, 2009, 19, 8619.	6.7	88
77	Au–Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Physical Chemistry Chemical Physics, 2008, 10, 1921.	2.8	136
78	Oxidation of alcohols using supported gold and gold–palladium nanoparticles. Faraday Discussions, 0, 145, 341-356.	3.2	128
79	The Over-Riding Role of Autocatalysis in Allylic Oxidation. Catalysis Letters, 0, , 1.	2.6	0