

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1690191/publications.pdf Version: 2024-02-01

XIAO LI

#	Article	IF	CITATIONS
1	Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature, 2011, 474, 390-394.	13.7	777
2	SR Proteins Collaborate with 7SK and Promoter-Associated Nascent RNA to Release Paused Polymerase. Cell, 2013, 153, 855-868.	13.5	279
3	R-ChIP Using Inactive RNase H Reveals Dynamic Coupling of R-loops with Transcriptional Pausing at Gene Promoters. Molecular Cell, 2017, 68, 745-757.e5.	4.5	263
4	GRID-seq reveals the global RNA–chromatin interactome. Nature Biotechnology, 2017, 35, 940-950.	9.4	233
5	The Augmented R-Loop Is a Unifying Mechanism for Myelodysplastic Syndromes Induced by High-Risk Splicing Factor Mutations. Molecular Cell, 2018, 69, 412-425.e6.	4.5	203
6	Non-coding RNA: a new frontier in regulatory biology. National Science Review, 2014, 1, 190-204.	4.6	175
7	Capturing the interactome of newly transcribed RNA. Nature Methods, 2018, 15, 213-220.	9.0	170
8	NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing. Nature Structural and Molecular Biology, 2017, 24, 816-824.	3.6	165
9	Chromatin-associated RNAs as facilitators of functional genomic interactions. Nature Reviews Genetics, 2019, 20, 503-519.	7.7	151
10	Nuclear Matrix Factor hnRNP U/SAF-A Exerts a Global Control of Alternative Splicing by Regulating U2 snRNP Maturation. Molecular Cell, 2012, 45, 656-668.	4.5	146
11	Pre-mRNA splicing: where and when in the nucleus. Trends in Cell Biology, 2011, 21, 336-343.	3.6	118
12	SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles. Molecular Biology of the Cell, 2012, 23, 3694-3706.	0.9	100
13	MicroRNAs Play a Critical Role in Tooth Development. Journal of Dental Research, 2010, 89, 779-784.	2.5	94
14	SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing. Molecular and Cellular Biology, 2015, 35, 3071-3082.	1.1	92
15	The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation. Development (Cambridge), 2013, 140, 3348-3359.	1.2	88
16	RBFox2 Binds Nascent RNA to Globally Regulate Polycomb Complex 2 Targeting in Mammalian Genomes. Molecular Cell, 2016, 62, 875-889.	4.5	66
17	Understanding the Role of Tbx1 as a Candidate Gene for 22q11.2 Deletion Syndrome. Current Allergy and Asthma Reports, 2013, 13, 613-621.	2.4	47
18	TBX1 protein interactions and microRNA-96-5p regulation controls cell proliferation during craniofacial and dental development: implications for 22q11.2 deletion syndrome. Human Molecular Genetics, 2015, 24, 2330-2348.	1.4	47

Xiao Li

#	Article	IF	CITATIONS
19	R-ChIP for genome-wide mapping of R-loops by using catalytically inactive RNASEH1. Nature Protocols, 2019, 14, 1661-1685.	5.5	46
20	Distinct human Langerhans cell subsets orchestrate reciprocal functions and require different developmental regulation. Immunity, 2021, 54, 2305-2320.e11.	6.6	38
21	A single nucleotide polymorphism associated with isolated cleft lip and palate, thyroid cancer and hypothyroidism alters the activity of an oral epithelium and thyroid enhancer near FOXE1. Human Molecular Genetics, 2015, 24, 3895-3907.	1.4	36
22	A Pituitary Homeobox 2 (Pitx2):microRNA-200a-3p:β-catenin Pathway Converts Mesenchymal Cells to Amelogenin-expressing Dental Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 27327-27341.	1.6	34
23	The LIM Homeodomain Transcription Factor LHX6. Journal of Biological Chemistry, 2013, 288, 2485-2500.	1.6	33
24	MicroRNA-26b Represses Colon Cancer Cell Proliferation by Inhibiting Lymphoid Enhancer Factor 1 Expression. Molecular Cancer Therapeutics, 2014, 13, 1942-1951.	1.9	33
25	A new plasmid-based microRNA inhibitor system that inhibits microRNA families in transgenic mice and cells: a potential new therapeutic reagent. Gene Therapy, 2016, 23, 527-542.	2.3	32
26	GRID-seq for comprehensive analysis of global RNA–chromatin interactions. Nature Protocols, 2019, 14, 2036-2068.	5.5	31
27	The TFAP2A–IRF6–GRHL3 genetic pathway is conserved in neurulation. Human Molecular Genetics, 2019, 28, 1726-1737.	1.4	30
28	lrx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation. Developmental Biology, 2017, 429, 44-55.	0.9	29
29	Hierarchical Interactions of Homeodomain and Forkhead Transcription Factors in Regulating Odontogenic Gene Expression. Journal of Biological Chemistry, 2011, 286, 21372-21383.	1.6	26
30	A model for the molecular underpinnings of tooth defects in Axenfeld–Rieger syndrome. Human Molecular Genetics, 2014, 23, 194-208.	1.4	26
31	The long noncoding RNA Malat1 regulates CD8+ T cell differentiation by mediating epigenetic repression. Journal of Experimental Medicine, 2022, 219, .	4.2	25
32	Single-cell transcriptomic landscape of nucleated cells in umbilical cord blood. GigaScience, 2019, 8, .	3.3	24
33	A Comprehensive Analysis of the T and B Lymphocytes Repertoire Shaped by HIV Vaccines. Frontiers in Immunology, 2018, 9, 2194.	2.2	23
34	Dact2 Represses PITX2 Transcriptional Activation and Cell Proliferation through Wnt/beta-Catenin Signaling during Odontogenesis. PLoS ONE, 2013, 8, e54868.	1.1	22
35	CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming. Cell Reports, 2022, 39, 110626.	2.9	22
36	An Evolutionarily Conserved Enhancer Regulates Bmp4 Expression in Developing Incisor and Limb Bud. PLoS ONE, 2012, 7, e38568.	1.1	20

Xiao Li

#	Article	IF	CITATIONS
37	Variants in the Wnt co-receptor LRP6 are associated with familial exudative vitreoretinopathy. Journal of Genetics and Genomics, 2022, 49, 590-594.	1.7	18
38	Whole-Exome Sequencing Identified <i>DLG1</i> as a Candidate Gene for Familial Exudative Vitreoretinopathy. Genetic Testing and Molecular Biomarkers, 2021, 25, 309-316.	0.3	17
39	The ER membrane protein complex subunit Emc3 controls angiogenesis via the FZD4/WNT signaling axis. Science China Life Sciences, 2021, 64, 1868-1883.	2.3	16
40	The phosphatidylserine flippase β-subunit Tmem30a is essential for normal insulin maturation and secretion. Molecular Therapy, 2021, 29, 2854-2872.	3.7	16
41	Global profiling of RNA–chromatin interactions reveals co-regulatory gene expression networks in Arabidopsis. Nature Plants, 2021, 7, 1364-1378.	4.7	13
42	Protein Inhibitors of Activated STAT (Pias1 and Piasy) Differentially Regulate Pituitary Homeobox 2 (PITX2) Transcriptional Activity. Journal of Biological Chemistry, 2013, 288, 12580-12595.	1.6	10
43	Risk factors of recurrence for resected T1aNOMO invasive lung adenocarcinoma: a clinicopathologic study of 177 patients. World Journal of Surgical Oncology, 2014, 12, 285.	0.8	10
44	Active retrotransposons help maintain pericentromeric heterochromatin required for faithful cell division. Genome Research, 2020, 30, 1570-1582.	2.4	9
45	Loss of phosphatidylserine flippase β-subunit <i>Tmem30a</i> in podocytes leads to albuminuria and glomerulosclerosis. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	8
46	Deletion of phosphatidylserine flippase β-subunit <i>Tmem30a</i> in satellite cells leads to delayed skeletal muscle regeneration. Zoological Research, 2021, 42, 650-659.	0.9	6
47	Identification of novel USH2A mutations in patients with autosomal recessive retinitis pigmentosa via targeted nextâ€'generation sequencing. Molecular Medicine Reports, 2020, 22, 193-200.	1.1	5
48	LMBR1L regulates the proliferation and migration of endothelial cells through Norrin/β-catenin signaling. Journal of Cell Science, 2022, 135, .	1.2	5
49	Loss of Wtap results in cerebellar ataxia and degeneration of Purkinje cells. Journal of Genetics and Genomics, 2022, 49, 847-858.	1.7	5
50	Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 55-66.	2.0	4
51	Disease Mutation Study Identifies Critical Residues for Phosphatidylserine Flippase ATP11A. BioMed Research International, 2020, 2020, 1-9.	0.9	4
52	3D genome encoded by LINE and SINE repeats. Cell Research, 2021, 31, 603-604.	5.7	4
53	A missense mutation in Pitx2 leads to early-onset glaucoma via NRF2-YAP1 axis. Cell Death and Disease, 2021, 12, 1017.	2.7	4
54	Deletion of Asrgl1 Leads to Photoreceptor Degeneration in Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 783547.	1.8	4

Χίλο Li

#	Article	IF	CITATIONS
55	Specific ablation of Hippo signalling component <i>Yap1</i> in retinal progenitors and Müller cells results in late onset retinal degeneration. Journal of Cellular Physiology, 2022, 237, 2673-2689.	2.0	3
56	Identification of Novel EYS Mutations by Targeted Sequencing Analysis. Genetic Testing and Molecular Biomarkers, 2020, 24, 745-753.	0.3	2
57	The Pitx2:miRâ€200 Family Axis Regulates WNT and BMP Signaling During Tooth Morphogenesis and Renewal. FASEB Journal, 2013, 27, 193.1.	0.2	0
58	MicroRNAâ€26b Represses Colon Cancer Cell Proliferation by Inhibiting Lymphoid Enhancer Factor 1 (LEFâ€1) Expression. FASEB Journal, 2013, 27, 967.9.	0.2	0