Sorana A Morrissy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1689747/publications.pdf

Version: 2024-02-01

54 8,156 32 53
papers citations h-index g-index

62 62 62 12211 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mutations in the RAS/MAPK Pathway Drive Replication Repair–Deficient Hypermutated Tumors and Confer Sensitivity to MEK Inhibition. Cancer Discovery, 2021, 11, 1454-1467.	7.7	19
2	Profiling Chromatin Accessibility at Single-cell Resolution. Genomics, Proteomics and Bioinformatics, 2021, 19, 172-190.	3.0	18
3	Reconstruction of Microbial Haplotypes by Integration of Statistical and Physical Linkage in Scaffolding. Molecular Biology and Evolution, 2021, 38, 2660-2672.	3 . 5	8
4	Histologyâ€based molecular profiling improves mutation detection for advanced thyroid cancer. Genes Chromosomes and Cancer, 2021, 60, 531-545.	1.5	5
5	The transcriptional landscape of Shh medulloblastoma. Nature Communications, 2021, 12, 1749.	5. 8	47
6	Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. Nature Communications, 2021, 12, 5238.	5 . 8	8
7	DNA Polymerase and Mismatch Repair Exert Distinct Microsatellite Instability Signatures in Normal and Malignant Human Cells. Cancer Discovery, 2021, 11, 1176-1191.	7.7	46
8	Copy-scAT: Deconvoluting single-cell chromatin accessibility of genetic subclones in cancer. Science Advances, 2021, 7, eabg6045.	4.7	19
9	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	15.2	141
10	ID1 Is Critical for Tumorigenesis and Regulates Chemoresistance in Glioblastoma. Cancer Research, 2019, 79, 4057-4071.	0.4	39
11	Single-Cell Transcriptomics in Medulloblastoma Reveals Tumor-Initiating Progenitors and Oncogenic Cascades during Tumorigenesis and Relapse. Cancer Cell, 2019, 36, 302-318.e7.	7.7	96
12	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	5. 2	56
13	IMMU-03. TUMOR NECROSIS FACTOR OVERCOMES IMMUNE EVASION IN P53-MUTANT MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii93-ii93.	0.6	1
14	Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature, 2019, 572, 67-73.	13.7	293
15	Intratumoral Genetic and Functional Heterogeneity in Pediatric Glioblastoma. Cancer Research, 2019, 79, 2111-2123.	0.4	28
16	Recurrent noncoding U1ÂsnRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature, 2019, 574, 707-711.	13.7	129
17	MEDU-28. ELIMINATING THE ROOT OF MEDULLOBLASTOMA BY TARGETING A VOLTAGE-GATED POTASSIUM CHANNEL. Neuro-Oncology, 2019, 21, ii109-ii109.	0.6	1
18	p53 Function Is Compromised by Inhibitor 2 of Phosphatase 2A in Sonic Hedgehog Medulloblastoma. Molecular Cancer Research, 2019, 17, 186-198.	1.5	10

#	Article	IF	CITATIONS
19	Dual Regulatory Functions of SUFU and Targetome of GLI2 in SHH Subgroup Medulloblastoma. Developmental Cell, 2019, 48, 167-183.e5.	3.1	39
20	BMI1 is a therapeutic target in recurrent medulloblastoma. Oncogene, 2019, 38, 1702-1716.	2.6	20
21	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	13.5	85
22	Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. Developmental Cell, 2018, 44, 709-724.e6.	3.1	35
23	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	5.1	268
24	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	9.4	112
25	ATOH1 Promotes Leptomeningeal Dissemination and Metastasis of Sonic Hedgehog Subgroup Medulloblastomas. Cancer Research, 2017, 77, 3766-3777.	0.4	29
26	Pyruvate Kinase Inhibits Proliferation during Postnatal Cerebellar Neurogenesis and Suppresses Medulloblastoma Formation. Cancer Research, 2017, 77, 3217-3230.	0.4	45
27	Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.e6.	7.7	836
28	Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. Cancer Cell, 2017, 32, 295-309.e12.	7.7	148
29	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	13.7	787
30	TMOD-11. HUMAN STEM CELL BASED MODEL OF MEDULLOBLASTOMA. Neuro-Oncology, 2017, 19, vi256-vi257.	0.6	0
31	Highlights of Children with Cancer UK's Workshop on Drug Delivery in Paediatric Brain Tumours. Ecancermedicalscience, 2016, 10, 630.	0.6	2
32	MB-102HEMATOGENOUS DISSEMINATION OF MEDULLOBLASTOMA DRIVES LEPTOMENINGEAL DISEASE. Neuro-Oncology, 2016, 18, iii120.2-iii120.	0.6	0
33	TMOD-17. CONVERGENCE OF BMI1 AND CHD7 ON ERK SIGNALLING IN MEDULLOBLASTOMA. Neuro-Oncology, 2016, 18, vi210-vi210.	0.6	0
34	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	7.7	191
35	MB-100DIVERGENT CLONAL SELECTION DOMINATES MEDULLOBLASTOMA AT RECURRENCE. Neuro-Oncology, 2016, 18, iii119.4-iii119.	0.6	O
36	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	13.7	266

3

#	Article	IF	Citations
37	HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC- Driven Medulloblastoma. Cancer Cell, 2016, 29, 311-323.	7.7	204
38	Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget, 2016, 7, 28169-28182.	0.8	62
39	Sleeping Beauty Mouse Models Identify Candidate Genes Involved in Gliomagenesis. PLoS ONE, 2014, 9, e113489.	1.1	21
40	Integrative Genomic Analyses of Atypical Teratoid Rhabdoid Tumours (ATRTs). Cancer Genetics, 2014, 207, 447-448.	0.2	2
41	Hippo Signaling Influences HNF4A and FOXA2 Enhancer Switching during Hepatocyte Differentiation. Cell Reports, 2014, 9, 261-271.	2.9	89
42	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	0.8	263
43	Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma. Cancer Cell, 2014, 26, 33-47.	7.7	241
44	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 2013, 125, 373-384.	3.9	169
45	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	3.9	146
46	Tissue-specific alternative polyadenylation at the imprinted gene Mest regulates allelic usage at Copg2. Nucleic Acids Research, 2012, 40, 1523-1535.	6.5	22
47	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	13.7	761
48	Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell, 2012, 22, 425-437.	7.7	1,551
49	Subgroup-specific alternative splicing in medulloblastoma. Acta Neuropathologica, 2012, 123, 485-499.	3.9	28
50	Abstract 1430: Characterization of the medulloblastoma splice-ome reveals subgroup-specific changes in alternative splicing and isoform expression patterns. , 2012, , .		0
51	Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Research, 2011, 21, 1203-1212.	2.4	68
52	Alternative expression analysis by RNA sequencing. Nature Methods, 2010, 7, 843-847.	9.0	283
53	Digital Gene Expression by Tag Sequencing on the Illumina Genome Analyzer. Current Protocols in Human Genetics, 2010, 65, Unit 11.11.1-36.	3.5	15
54	Next-generation tag sequencing for cancer gene expression profiling. Genome Research, 2009, 19, 1825-1835.	2.4	306