
David Pitcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1689581/publications.pdf Version: 2024-02-01

Πλυίο Ριτсήερ

#	Article	IF	CITATIONS
1	Face learning via brief real-world social interactions induces changes in face-selective brain areas and hippocampus. Perception, 2022, 51, 521-538.	1.2	8
2	Evidence for a Third Visual Pathway Specialized for Social Perception. Trends in Cognitive Sciences, 2021, 25, 100-110.	7.8	215
3	Transcranial Magnetic Stimulation and the Understanding of Behavior. Annual Review of Psychology, 2021, 72, 97-121.	17.7	40
4	Theta-burst TMS of lateral occipital cortex reduces BOLD responses across category-selective areas in ventral temporal cortex. NeuroImage, 2021, 230, 117790.	4.2	12
5	Characterizing the Third Visual Pathway for Social Perception. Trends in Cognitive Sciences, 2021, 25, 550-551.	7.8	3
6	Stimulating parietal regions of the multiple-demand cortex impairs novel vocabulary learning. Neuropsychologia, 2021, 162, 108047.	1.6	4
7	The Human Posterior Superior Temporal Sulcus Samples Visual Space Differently From Other Face-Selective Regions. Cerebral Cortex, 2020, 30, 778-785.	2.9	26
8	Dissociable pathways for moving and static face perception begin in early visual cortex: Evidence from an acquired prosopagnosic. Cortex, 2020, 130, 327-339.	2.4	16
9	Theta-burst TMS to the posterior superior temporal sulcus decreases resting-state fMRI connectivity across the face processing network. Network Neuroscience, 2020, 4, 746-760.	2.6	17
10	Dual-site TMS demonstrates causal functional connectivity between the left and right posterior temporal sulci during facial expression recognition. Brain Stimulation, 2020, 13, 1008-1013.	1.6	17
11	A functional dissociation of face-, body- and scene-selective brain areas based on their response to moving and static stimuli. Scientific Reports, 2019, 9, 8242.	3.3	45
12	TMS demonstrates that both right and left superior temporal sulci are important for facial expression recognition. NeuroImage, 2018, 183, 394-400.	4.2	45
13	A comprehensive investigation of face recognition lateralisation in the posterior superior temporal sulcus Journal of Vision, 2018, 18, 1076.	0.3	1
14	The Superior Temporal Sulcus Is Causally Connected to the Amygdala: A Combined TBS-fMRI Study. Journal of Neuroscience, 2017, 37, 1156-1161.	3.6	67
15	The superior temporal sulcus is causally connected to the amygdala: A combined TBS-fMRI study. Journal of Vision, 2017, 17, 258.	0.3	О
16	Normal acquisition of expertise with greebles in two cases of acquired prosopagnosia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5123-5128.	7.1	41
17	Combined TMS and fMRI Reveal Dissociable Cortical Pathways for Dynamic and Static Face Perception. Current Biology, 2014, 24, 2066-2070.	3.9	118
18	Facial Expression Recognition Takes Longer in the Posterior Superior Temporal Sulcus than in the Occipital Face Area. Journal of Neuroscience, 2014, 34, 9173-9177.	3.6	77

DAVID PITCHER

#	Article	IF	CITATIONS
19	Two Critical and Functionally Distinct Stages of Face and Body Perception. Journal of Neuroscience, 2012, 32, 15877-15885.	3.6	96
20	Acquired prosopagnosia with spared within-class object recognition but impaired recognition of degraded basic-level objects. Cognitive Neuropsychology, 2012, 29, 325-347.	1.1	45
21	Differential selectivity for dynamic versus static information in face-selective cortical regions. NeuroImage, 2011, 56, 2356-2363.	4.2	358
22	The role of lateral occipital face and object areas in the face inversion effect. Neuropsychologia, 2011, 49, 3448-3453.	1.6	79
23	Stimulation of Category-Selective Brain Areas Modulates ERP to Their Preferred Categories. Current Biology, 2011, 21, 1894-1899.	3.9	41
24	The role of the occipital face area in the cortical face perception network. Experimental Brain Research, 2011, 209, 481-493.	1.5	312
25	Transcranial Magnetic Stimulation Studies of Face Processing. , 2011, , .		2
26	Triple Dissociation of Faces, Bodies, and Objects in Extrastriate Cortex. Current Biology, 2009, 19, 319-324.	3.9	291
27	Transcranial Magnetic Stimulation Disrupts the Perception and Embodiment of Facial Expressions. Journal of Neuroscience, 2008, 28, 8929-8933.	3.6	329
28	TMS Evidence for the Involvement of the Right Occipital Face Area in Early Face Processing. Current Biology, 2007, 17, 1568-1573.	3.9	431