Qian Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1689386/qian-liu-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 5,156 129 37 h-index g-index citations papers 5,880 145 7.9 5.71 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
129	Identification of two-dimensional copper signatures in human blood for bladder cancer with machine learning <i>Chemical Science</i> , 2022 , 13, 1648-1656	9.4	2
128	Data-Driven Machine Learning in Environmental Pollution: Gains and Problems <i>Environmental Science & Environmental &</i>	10.3	7
127	Phase transformation of silica particles in coal and biomass combustion processes. <i>Environmental Pollution</i> , 2022 , 292, 118312	9.3	2
126	Calculation and Experimental Validation of a Novel Approach Using Solubility Parameters as Indicators for the Extraction of Additives in Plastics. <i>Analytical Chemistry</i> , 2021 , 93, 14837-14843	7.8	O
125	Hierarchical Carbon/Metal Nanostructure with a Combination of 0D Nanoparticles, 1D Nanofibers, and 2D Nanosheets: An Efficient Bifunctional Catalyst for Zinc-Air Batteries. <i>ChemElectroChem</i> , 2021 , 8, 1107-1116	4.3	2
124	COVID-19-Induced Lockdowns Indicate the Short-Term Control Effect of Air Pollutant Emission in 174 Cities in China. <i>Environmental Science & Environmental Science & Environme</i>	10.3	7
123	Identification, Quantification, and Imaging of the Biodistribution of Soot Particles by Mass Spectral Fingerprinting. <i>Analytical Chemistry</i> , 2021 , 93, 6665-6672	7.8	1
122	3D Printing-Induced Fine Particle and Volatile Organic Compound Emission: An Emerging Health Risk. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 616-625	11	6
121	Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. <i>Chemical Society Reviews</i> , 2021 , 50, 5243-5280	58.5	7
120	Identification and Speciation of Nanoscale Silver in Complex Solid Matrices by Sequential Extraction Coupled with Inductively Coupled Plasma Optical Emission Spectrometry. <i>Analytical Chemistry</i> , 2021 , 93, 1962-1968	7.8	8
119	Development of Human Lung Induction Models for Air PollutantsPToxicity Assessment. <i>Environmental Science & Environmental Scie</i>	10.3	5
118	Evidence of Foodborne Transmission of the Coronavirus (COVID-19) through the Animal Products Food Supply Chain. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	14
117	Resurgence of Sandstorms Complicates Chinaß Air Pollution Situation. <i>Environmental Science</i> & amp; Technology, 2021 , 55, 11467-11469	10.3	O
116	Inherited and acquired corona of coronavirus in the host: Inspiration from the biomolecular corona of nanoparticles. <i>Nano Today</i> , 2021 , 39, 101161	17.9	3
115	Used disposable face masks are significant sources of microplastics to environment. <i>Environmental Pollution</i> , 2021 , 285, 117485	9.3	39
114	Early pregnancy loss: Do Per- and polyfluoroalkyl substances matter?. <i>Environment International</i> , 2021 , 157, 106837	12.9	1
113	New Insights into Unexpected Severe PM Pollution during the SARS and COVID-19 Pandemic Periods in Beijing <i>Environmental Science & Environmental Sci</i>	10.3	1

112	Two-Dimensional Silicon Fingerprints Reveal Dramatic Variations in the Sources of Particulate Matter in Beijing during 2013-2017. <i>Environmental Science & Environmental Science</i> & 2013-2017. <i>Environmental Science</i> & 2013-2017.	10.3	7
111	Complexation of Fe(III)/Catechols in atmospheric aqueous phase and the consequent cytotoxicity assessment in human bronchial epithelial cells (BEAS-2B). <i>Ecotoxicology and Environmental Safety</i> , 2020 , 202, 110898	7	2
110	Separation and Tracing of Anthropogenic Magnetite Nanoparticles in the Urban Atmosphere. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	20
109	Reversible photo/thermal stimuli-responsive electrical bistability performance in supramolecular co-crystals accompanied by crystalline-to-amorphous transformations. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 3258-3267	7.1	3
108	The engineering of stilbazolium/iodocuprate hybrids with optical/electrical performances by modulating inter-molecular charge transfer among H-aggregated chromophores. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 1451-1466	6.8	6
107	A 3D-printed modularized purification system for rapid, high-throughput MALDI-MS analysis of small-volume biological samples. <i>Chemical Communications</i> , 2020 , 56, 1637-1640	5.8	4
106	New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 9713-9723	6.8	12
105	Chemical multi-fingerprinting of exogenous ultrafine particles in human serum and pleural effusion. <i>Nature Communications</i> , 2020 , 11, 2567	17.4	41
104	Metallic Fingerprints of Carbon: Label-Free Tracking and Imaging of Graphene in Plants. <i>Analytical Chemistry</i> , 2020 , 92, 1948-1955	7.8	5
103	Core-Shell Structured Layered Lanthanide-Organic Complexes with Stilbazolium-type Dye Encapsulation for Multifunctional Performances. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 136-147	4.5	3
102	In Situ Tracking Photodegradation of Trace Graphene Oxide by the Online Coupling of Photoinduced Chemical Vapor Generation with a Point Discharge Optical Emission Spectrometer. <i>Analytical Chemistry</i> , 2020 , 92, 1549-1556	7.8	3
101	PM induces vascular permeability increase through activating MAPK/ERK signaling pathway and ROS generation. <i>Journal of Hazardous Materials</i> , 2020 , 386, 121659	12.8	18
100	Thermal fragmentation enhanced identification and quantification of polystyrene micro/nanoplastics in complex media. <i>Talanta</i> , 2020 , 208, 120478	6.2	34
99	A selective adsorption-based separation of low-mass molecules from biological samples towards high-throughput mass spectrometry analysis in a single drop of human whole blood. <i>Talanta</i> , 2019 , 202, 237-243	6.2	2
98	Environmental applications of metal stable isotopes: Silver, mercury and zinc. <i>Environmental Pollution</i> , 2019 , 252, 1344-1356	9.3	18
97	Tuning the performance of graphene as a dual-ion-mode MALDI matrix by chemical functionalization and sample incubation. <i>Talanta</i> , 2019 , 199, 532-540	6.2	14
96	Unraveling the role of silicon in atmospheric aerosol secondary formation: a new conservative tracer for aerosol chemistry. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2861-2870	6.8	8
95	Fabricating photoelectrochemical aptasensor for sensitive detection of aflatoxin B1 with visible-light-driven BiOBr/nitrogen-doped graphene nanoribbons. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 840, 67-73	4.1	14

94	Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning. <i>Nature Communications</i> , 2019 , 10, 1620	17.4	17
93	Templated synthesis of a bifunctional Janus graphene for enhanced enrichment of both organic and inorganic targets. <i>Chemical Communications</i> , 2019 , 55, 4957-4960	5.8	9
92	Ag2S-doped core-shell nanostructures of Fe3O4@Ag3PO4 ultrathin film: Major role of hole in rapid degradation of pollutants under visible light irradiation. <i>Chemical Engineering Journal</i> , 2019 , 366, 123-1	3 ^{24.7}	26
91	Airborne Fine Particles Induce Hematological Effects through Regulating the Crosstalk of the Kallikrein-Kinin, Complement, and Coagulation Systems. <i>Environmental Science & Complement</i> , 2019, 53, 2840-2851	10.3	14
90	Nonvolatile Electrical Bistability Behaviors Observed in Au/Ag Nanoparticle-Embedded MOFs and Switching Mechanisms. <i>ACS Applied Materials & District Research</i> , 11, 47073-47082	9.5	10
89	Association of maternal serum copper during early pregnancy with the risk of spontaneous preterm birth: A nested case-control study in China. <i>Environment International</i> , 2019 , 122, 237-243	12.9	22
88	Rapid and Sensitive Detection of Multi-Class Food Additives in Beverages for Quality Control by Using HPLC-DAD and Chemometrics Methods. <i>Food Analytical Methods</i> , 2019 , 12, 381-393	3.4	14
87	3D printing of graphene-doped target for "matrix-free" laser desorption/ionization mass spectrometry. <i>Chemical Communications</i> , 2018 , 54, 2723-2726	5.8	32
86	Natural Silicon Isotopic Signatures Reveal the Sources of Airborne Fine Particulate Matter. <i>Environmental Science & Environmental Science & Environme</i>	10.3	17
85	Fast screening of short-chain chlorinated paraffins in indoor dust samples by graphene-assisted laser desorption/ionization mass spectrometry. <i>Talanta</i> , 2018 , 179, 575-582	6.2	11
84	Preliminary investigation on cytotoxicity of fluorinated polymer nanoparticles. <i>Journal of Environmental Sciences</i> , 2018 , 69, 217-226	6.4	14
83	Chemometrics-assisted HPLC-DAD as a rapid and interference-free strategy for simultaneous determination of 17 polyphenols in raw propolis. <i>Analytical Methods</i> , 2018 , 10, 5577-5588	3.2	9
82	Re-evaluation of stability and toxicity of silver sulfide nanoparticle in environmental water: Oxidative dissolution by manganese oxide. <i>Environmental Pollution</i> , 2018 , 243, 1242-1251	9.3	16
81	Salmonella proteomics under oxidative stress reveals coordinated regulation of antioxidant defense with iron metabolism and bacterial virulence. <i>Journal of Proteomics</i> , 2017 , 157, 52-58	3.9	14
80	Recent progress in the application of nanomaterials in the analysis of emerging chemical contaminants. <i>Analytical Methods</i> , 2017 , 9, 2768-2783	3.2	23
79	GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater. <i>Journal of Analytical Atomic Spectrometry</i> , 2017 , 32, 562-578	3.7	23
78	Fluorographene as a Mass Spectrometry Probe for High-Throughput Identification and Screening of Emerging Chemical Contaminants in Complex Samples. <i>Analytical Chemistry</i> , 2017 , 89, 1307-1314	7.8	43
77	Recent advances in the analysis of non-traditional stable isotopes by multi-collector inductively coupled plasma mass spectrometry. <i>Journal of Analytical Atomic Spectrometry</i> , 2017 , 32, 1848-1861	3.7	17

76	Role of Secondary Particle Formation in the Persistence of Silver Nanoparticles in Humic Acid Containing Water under Light Irradiation. <i>Environmental Science & Environmental Science & Environmental</i>	172.3	28
75	Evaluation and reduction of the analytical uncertainties in GC-MS analysis using a boundary regression model. <i>Talanta</i> , 2017 , 164, 141-147	6.2	7
74	Stable silver isotope fractionation in the natural transformation process of silver nanoparticles. <i>Nature Nanotechnology</i> , 2016 , 11, 682-6	28.7	63
73	Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 2861-73	4.4	52
72	Screening of Toxic Chemicals in a Single Drop of Human Whole Blood Using Ordered Mesoporous Carbon as a Mass Spectrometry Probe. <i>Analytical Chemistry</i> , 2016 , 88, 4107-13	7.8	47
71	Rethinking Stability of Silver Sulfide Nanoparticles (Ag2S-NPs) in the Aquatic Environment: Photoinduced Transformation of Ag2S-NPs in the Presence of Fe(III). <i>Environmental Science & Technology</i> , 2016 , 50, 188-96	10.3	47
70	Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction. <i>Nanotoxicology</i> , 2016 , 10, 501-11	5.3	17
69	Natural stable isotopes: new tracers in environmental health studies. <i>National Science Review</i> , 2016 , 3, 410-410	10.8	2
68	The potential neurotoxicity of emerging tetrabromobisphenol A derivatives based on rat pheochromocytoma cells. <i>Chemosphere</i> , 2016 , 154, 194-203	8.4	39
67	Silver nanoparticle exposure induces rat motor dysfunction through decrease in expression of calcium channel protein in cerebellum. <i>Toxicology Letters</i> , 2015 , 237, 112-20	4.4	31
66	An antibody-graphene oxide nanoribbon conjugate as a surface enhanced laser desorption/ionization probe with high sensitivity and selectivity. <i>Chemical Communications</i> , 2015 , 51, 4619-22	5.8	28
65	Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. <i>ACS Nano</i> , 2015 , 9, 10498-515	16.7	267
64	High-Throughput and Rapid Screening of Low-Mass Hazardous Compounds in Complex Samples. <i>Analytical Chemistry</i> , 2015 , 87, 6931-6	7.8	31
63	Graphene oxide nanoribbons: improved synthesis and application in MALDI mass spectrometry. <i>Chemistry - A European Journal</i> , 2015 , 21, 5594-9	4.8	33
62	Automated and sensitive determination of four anabolic androgenic steroids in urine by online turbulent flow solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry: a novel approach for clinical monitoring and doping control. <i>Talanta</i> , 2014 , 125, 432-8	6.2	19
61	Graphenized pencil lead fiber: facile preparation and application in solid-phase microextraction. <i>Journal of Chromatography A</i> , 2014 , 1325, 1-7	4.5	36
60	Identification and accurate size characterization of nanoparticles in complex media. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14476-9	16.4	52
59	Identification and Accurate Size Characterization of Nanoparticles in Complex Media. <i>Angewandte Chemie</i> , 2014 , 126, 14704-14707	3.6	5

58	Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. <i>ACS Nano</i> , 2014 , 8, 5813-25	16.7	72
57	Nanomaterials for analysis and monitoring of emerging chemical pollutants. <i>TrAC - Trends in Analytical Chemistry</i> , 2014 , 58, 10-22	14.6	83
56	Direct analysis of eight chlorophenols in urine by large volume injection online turbulent flow solid-phase extraction liquid chromatography with multiple wavelength ultraviolet detection. <i>Talanta</i> , 2014 , 119, 396-400	6.2	23
55	Rapid determination of tetrabromobisphenol A and its main derivatives in aqueous samples by ultrasound-dispersive liquid-liquid microextraction combined with high-performance liquid chromatography. <i>Talanta</i> , 2013 , 116, 906-11	6.2	33
54	Mildly oxidized graphene: facile synthesis, characterization, and application as a matrix in MALDI mass spectrometry. <i>Chemistry - A European Journal</i> , 2013 , 19, 5561-5	4.8	50
53	Effects of polycyclic musks HHCB and AHTN on steroidogenesis in H295R cells. <i>Chemosphere</i> , 2013 , 90, 1227-35	8.4	27
52	Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) in biosolids from municipal wastewater treatment plants in China. <i>Chemosphere</i> , 2013 , 90, 2388-95	8.4	35
51	Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2013 , 1281, 9-18	4.5	74
50	Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. <i>Small</i> , 2013 , 9, 1831-41	11	98
49	Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. <i>Analytica Chimica Acta</i> , 2013 , 770, 140-6	6.6	115
48	The ex vivo and in vivo biological performances of graphene oxide and the impact of surfactant on graphene oxideß biocompatibility. <i>Journal of Environmental Sciences</i> , 2013 , 25, 873-81	6.4	38
47	Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China. <i>Environmental Pollution</i> , 2012 , 160, 88-94	9.3	64
46	Sample preparation method for the speciation of polybrominated diphenyl ethers and their methoxylated and hydroxylated analogues in diverse environmental matrices. <i>Talanta</i> , 2012 , 88, 669-76	6.2	46
45	Characterization of interactions between organotin compounds and human serum albumin by capillary electrophoresis coupled with inductively coupled plasma mass spectrometry. <i>Talanta</i> , 2012 , 93, 239-44	6.2	19
44	Application of graphene in analytical sample preparation. <i>TrAC - Trends in Analytical Chemistry</i> , 2012 , 37, 1-11	14.6	242
43	Preparation of graphene-encapsulated magnetic microspheres for protein/peptide enrichment and MALDI-TOF MS analysis. <i>Chemical Communications</i> , 2012 , 48, 1874-6	5.8	167
42	A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. <i>Nanoscale</i> , 2012 , 4, 5864-7	7.7	246
41	Distribution of short chain chlorinated paraffins in marine sediments of the East China Sea: influencing factors, transport and implications. <i>Environmental Science & amp; Technology</i> , 2012 , 46, 9898	- 3 0.3	69

(2009-2012)

40	Preparation and evaluation of mesoporous cellular foams coating of solid-phase microextraction fibers by determination of tetrabromobisphenol A, tetrabromobisphenol S and related compounds. <i>Analytica Chimica Acta</i> , 2012 , 753, 1-7	6.6	67
39	Hemimicelles/admicelles supported on magnetic graphene sheets for enhanced magnetic solid-phase extraction. <i>Journal of Chromatography A</i> , 2012 , 1257, 1-8	4.5	75
38	Distribution and trophic transfer of short-chain chlorinated paraffins in an aquatic ecosystem receiving effluents from a sewage treatment plant. <i>Environmental Science & Environmental Science & Env</i>	10.3	131
37	Spatial and vertical distribution of short chain chlorinated paraffins in soils from wastewater irrigated farmlands. <i>Environmental Science & Environmental Science & Environm</i>	10.3	133
36	Graphene-assisted matrix solid-phase dispersion for extraction of polybrominated diphenyl ethers and their methoxylated and hydroxylated analogs from environmental samples. <i>Analytica Chimica Acta</i> , 2011 , 708, 61-8	6.6	78
35	Nonionic surfactant enhanced semipermanent coatings for capillary electrophoresis of inorganic anions without use of organic additives. <i>Journal of Separation Science</i> , 2011 , 34, 2441-7	3.4	3
34	Graphene and Graphene Oxide Sheets Supported on Silica as Versatile and High-Performance Adsorbents for Solid-Phase Extraction. <i>Angewandte Chemie</i> , 2011 , 123, 6035-6039	3.6	84
33	Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5913-7	16.4	339
32	Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes. <i>Journal of Chromatography A</i> , 2011 , 1218, 197-204	4.5	278
31	Capping agent replacement induced self-organization of ultrathin nanowires: a new and general approach for fabricating noble metal nanoporous films with small ligament sizes. <i>Chemical Communications</i> , 2011 , 47, 1613-5	5.8	12
30	Nitrate enhanced electrochemiluminescence determination of tris(2,3-dibromopropyl) isocyanurate with a gold nanoparticles-modified gold electrode. <i>Analyst, The</i> , 2011 , 136, 1952-6	5	14
29	Mixed hemimicelles SPE based on CTAB-coated Fe3O4/SiO2 NPs for the determination of herbal bioactive constituents from biological samples. <i>Talanta</i> , 2010 , 80, 1873-80	6.2	80
28	Generation of gold nanostructures at the surface of platinum electrode by electrodeposition for ECL detection for CE. <i>Electrophoresis</i> , 2010 , 31, 1055-62	3.6	11
27	Functional amino acid ionic liquids as solvent and selector in chiral extraction. <i>Journal of Chromatography A</i> , 2010 , 1217, 4669-74	4.5	80
26	Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations. <i>Chemistry - A European Journal</i> , 2009 , 15, 9889-96	4.8	78
25	Layer-by-layer assembly of polyelectrolyte and nanoparticles, monitored by capillary electrophoresis. <i>Chemistry - A European Journal</i> , 2009 , 15, 12828-36	4.8	11
24	Separation of acidic and basic proteins by CE with CTAB additive and its applications in peptide and protein profiling. <i>Electrophoresis</i> , 2009 , 30, 2151-8	3.6	9
23	Ionic liquid surfactant-mediated ultrasonic-assisted extraction coupled to HPLC: application to analysis of tanshinones in Salvia miltiorrhiza bunge. <i>Journal of Separation Science</i> , 2009 , 32, 4220-6	3.4	85

22	Use of gemini surfactants as semipermanent capillary coatings in aqueous-organic solvents for capillary electrophoretic separation of inorganic anions. <i>Journal of Separation Science</i> , 2009 , 32, 4148-5	54 ^{3.4}	6
21	Separation of acidic and basic proteins by capillary electrophoresis using gemini surfactants and gemini-capped nanoparticles as buffer additives. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 1666-16	76	4
20	Direct analysis of cryptotanshinone and tanshinone IIA in biological samples and herbal medicinal preparations by a green technique of micellar liquid chromatography. <i>Green Chemistry</i> , 2009 , 11, 132-1	3 ⁷⁰	19
19	Cationic double-chained surfactant as pseudostationary phase in micellar electrokinetic capillary chromatography for drug separations. <i>Talanta</i> , 2008 , 75, 677-83	6.2	4
18	Spacer-mediated synthesis of size-controlled gold nanoparticles using geminis as ligands. <i>Langmuir</i> , 2008 , 24, 1595-9	4	35
17	New derivatizing reagent for analysis of diethylene glycol by HPLC with fluorescence detection. <i>Journal of Separation Science</i> , 2008 , 31, 3857-63	3.4	3
16	Long-chained gemini surfactants for semipermanent wall coatings in capillary electrophoresis of proteins. <i>Electrophoresis</i> , 2008 , 29, 871-9	3.6	15
15	Purification of undiluted ionic liquids from trace-colored impurities for spectroscopy by octadecylsilyl solid-phase extraction. <i>Separation and Purification Technology</i> , 2008 , 60, 245-250	8.3	25
14	Simultaneous analysis of six aristolochic acids and five aristolactams in herbal plants and their preparations by high-performance liquid chromatography-diode array detection-fluorescence detection. <i>Journal of Chromatography A</i> , 2008 , 1182, 85-92	4.5	38
13	Enhanced stability of surfactant-based semipermanent wall coatings in capillary electrophoresis using oppositely charged surfactant. <i>Journal of Chromatography A</i> , 2008 , 1187, 260-6	4.5	21
12	Quantification of amino acid ionic liquids using liquid chromatography-mass spectrometry. <i>Journal of Chromatography A</i> , 2008 , 1208, 175-81	4.5	19
11	Cationic gemini surfactant as dynamic coating in CE for the control of EOF and wall adsorption. <i>Electrophoresis</i> , 2007 , 28, 2275-82	3.6	30
10	Improved determination of 5-fluorouracil and its prodrug tegafur in pharmaceuticals by large-volume sample stacking in CE. <i>Journal of Separation Science</i> , 2007 , 30, 3296-301	3.4	15
9	Comparative study on the interaction of DNA with three different kinds of surfactants and the formation of multilayer films. <i>Bioelectrochemistry</i> , 2007 , 70, 301-7	5.6	21
8	Simultaneous determination of flavonoid and alkaloid compounds in Citrus herbs by high-performance liquid chromatography-photodiode array detection-electrospray mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life	3.2	30
7	Characterization and determination of six aristolochic acids and three aristololactams in medicinal plants and their preparations by high-performance liquid chromatography-photodiode array detection/electrospray ionization mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> ,	2.2	34
6	Simultaneous determination of nine aristolochic acid analogues in medicinal plants and preparations by high-performance liquid chromatography. <i>Talanta</i> , 2007 , 73, 644-50	6.2	26
5	Optical and Bioelectrochemical Characterization of Water-Miscible Ionic Liquids Based Composites of Multiwalled Carbon Nanotubes. <i>Electroanalysis</i> , 2006 , 18, 1681-1688	3	29

LIST OF PUBLICATIONS

4	Nonaqueous capillary electrophoresis coupled with laser-induced native fluorescence detection for the analysis of berberine, palmatine, and jatrorrhizine in Chinese herbal medicines. <i>Journal of Separation Science</i> , 2006 , 29, 1268-74	3.4	36
3	A simple and sensitive method of nonaqueous capillary electrophoresis with laser-induced native fluorescence detection for the analysis of chelerythrine and sanguinarine in Chinese herbal medicines. <i>Talanta</i> , 2006 , 70, 202-7	6.2	32
2	DNA biosensor based on chitosan film doped with carbon nanotubes. <i>Analytical Biochemistry</i> , 2005 , 346, 107-14	3.1	148
	5+0, 10 <i>1</i> -14		