
Feng-Chun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1688713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Molecular Cell, 2022, 82, 833-851.e11.	9.7	48
2	HOXBLINC long non-coding RNA activation promotes leukemogenesis in NPM1-mutant acute myeloid leukemia. Nature Communications, 2021, 12, 1956.	12.8	28
3	INTS11 regulates hematopoiesis by promoting PRC2 function. Science Advances, 2021, 7, eabh1684.	10.3	6
4	p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia. JCI Insight, 2021, 6, .	5.0	11
5	The Role of ASXL1/2 and Their Associated Proteins in Malignant Hematopoiesis. Current Stem Cell Reports, 2020, 6, 6-15.	1.6	5
6	HOTTIP IncRNA Promotes Hematopoietic Stem Cell Self-Renewal Leading to AML-like Disease in Mice. Cancer Cell, 2019, 36, 645-659.e8.	16.8	116
7	ASXL1 alteration cooperates with JAK2V617F to accelerate myelofibrosis. Leukemia, 2019, 33, 1287-1291.	7.2	26
8	A novel ASXL1–OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies. Leukemia, 2018, 32, 1327-1337.	7.2	50
9	Reduced BAP1 activity prevents ASXL1 truncation-driven myeloid malignancy in vivo. Leukemia, 2018, 32, 1834-1837.	7.2	20
10	Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates. Cell Discovery, 2018, 4, 4.	6.7	28
11	TET2 Loss Dysregulates the Behavior of Bone Marrow Mesenchymal Stromal Cells and Accelerates Tet2-Driven Myeloid Malignancy Progression. Stem Cell Reports, 2018, 10, 166-179.	4.8	34
12	Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia. Journal of Cancer Research and Clinical Oncology, 2018, 144, 1065-1077.	2.5	74
13	Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood, 2018, 131, 328-341.	1.4	133
14	Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy. Journal of Clinical Investigation, 2018, 128, 5383-5398.	8.2	25
15	Cardiac Sca-1 ⁺ Cells Are Not Intrinsic Stem Cells for Myocardial Development, Renewal, and Repair. Circulation, 2018, 138, 2919-2930.	1.6	37
16	Tet2 Regulates Osteoclast Differentiation by Interacting with Runx1 and Maintaining Genomic 5-Hydroxymethylcytosine (5hmC). Genomics, Proteomics and Bioinformatics, 2018, 16, 172-186.	6.9	22
17	CARM1 Is Essential for Myeloid Leukemogenesis but Dispensable for Normal Hematopoiesis. Cancer Cell, 2018, 33, 1111-1127.e5.	16.8	48
18	Suv39h1 Represses the Progression of MLL-Rearranged Myeloid Leukemia Via Hoxb13. Blood, 2018, 132, 3878-3878	1.4	0

Feng-Chun Yang

#	Article	IF	CITATIONS
19	ASXL1 interacts with the cohesin complex to maintain chromatid separation and gene expression for normal hematopoiesis. Science Advances, 2017, 3, e1601602.	10.3	35
20	Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells. Nature Communications, 2017, 8, 15102.	12.8	88
21	Loss of Asxl2 leads to myeloid malignancies in mice. Nature Communications, 2017, 8, 15456.	12.8	23
22	Caspase-3 controls AML1-ETO–driven leukemogenesis via autophagy modulation in a ULK1-dependent manner. Blood, 2017, 129, 2782-2792.	1.4	39
23	Improving Combination Osteoporosis Therapy in a Preclinical Model of Heightened Osteoanabolism. Endocrinology, 2017, 158, 2722-2740.	2.8	9
24	Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem Cell Investigation, 2017, 4, 48-48.	3.0	31
25	Differential role of Id1 in MLL-AF9–driven leukemia based on cell of origin. Blood, 2016, 127, 2322-2326.	1.4	15
26	Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cells, Leading to Bohring-Opitz-like Syndrome in Mice. Stem Cell Reports, 2016, 6, 914-925.	4.8	18
27	ASXL1 plays an important role in erythropoiesis. Scientific Reports, 2016, 6, 28789.	3.3	38
28	The catalytic activity of TET2 is essential for its myeloid malignancy-suppressive function in hematopoietic stem/progenitor cells. Leukemia, 2016, 30, 1784-1788.	7.2	24
29	Upregulation of miR-99a is associated with poor prognosis of acute myeloid leukemia and promotes myeloid leukemia cell expansion. Oncotarget, 2016, 7, 78095-78109.	1.8	29
30	The <scp>TET2</scp> interactors and their links to hematological malignancies. IUBMB Life, 2015, 67, 438-445.	3.4	27
31	Loss of Asxl1 leads to myelodysplastic syndrome–like disease in mice. Blood, 2014, 123, 541-553.	1.4	145
32	Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood, 2011, 118, 4509-4518.	1.4	562
33	Plexiform neurofibroma genesis: questions of Nf1 gene dose and hyperactive mast cells. Current Opinion in Hematology, 2010, 17, 287-293.	2.5	29