Josef Sepitka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1688488/publications.pdf

Version: 2024-02-01

		1163117	888059
32	317	8	17
papers	citations	h-index	g-index
33 all docs	33 docs citations	33 times ranked	550 citing authors

#	Article	IF	Citations
1	Calcium-doped titanium thin films prepared with the assistance of an oxygen ion beam: The effect of Ca content on microstructure, mechanical properties and adhesion. Applied Surface Science, 2022, 573, 151569.	6.1	5
2	Pulsed Plasma Surfacing of Titanium Matrix Cermet Based on B4C. Journal of Thermal Spray Technology, 2022, 31, 1975-1984.	3.1	3
3	Pulsed-PTA Preparation of B4C-Based Titanium Matrix Cermet. , 2021, , .		O
4	<i>In vitro</i> evaluation of a novel nanostructured Ti-36Nb-6Ta alloy for orthopedic applications. Nanomedicine, 2020, 15, 1843-1859.	3.3	6
5	The role of vascularization on changes in ligamentum flavum mechanical properties and development of hypertrophy in patients with lumbar spinal stenosis. Spine Journal, 2020, 20, 1125-1133.	1.3	12
6	Arbitrarily-shaped microgels composed of chemically unmodified biopolymers. Biomaterials Science, 2020, 8, 3044-3051.	5.4	3
7	Influence of surface pre-treatment with mechanical polishing, chemical, electrochemical and ion sputter etching on the surface properties, corrosion resistance and MG-63 cell colonization of commercially pure titanium. Materials Science and Engineering C, 2020, 115, 111065.	7.3	14
8	Different diameters of titanium dioxide nanotubes modulate Saos-2 osteoblast-like cell adhesion and osteogenic differentiation and nanomechanical properties of the surface. RSC Advances, 2019, 9, 11341-11355.	3.6	17
9	Hardness response to the stability of a Ti(+N) solid solution in an annealed TiN/Ti(+N)/Ti mixture layer formed by nitrogen ion implantation into titanium. Journal of Alloys and Compounds, 2018, 746, 490-495.	5.5	17
10	Creep damage index as a sensitive indicator of damage accumulation in thermoplastic laminates. Journal of Reinforced Plastics and Composites, 2018, 37, 147-154.	3.1	0
11	Increased elastic modulus of plasma polymer coatings reinforced with detonation nanodiamond particles improves osteogenic differentiation of mesenchymal stem cells. Turkish Journal of Biology, 2018, 42, 195-203.	0.8	1
12	Antibacterial, mechanical and surface properties of Ag-DLC films prepared by dual PLD for medical applications. Materials Science and Engineering C, 2017, 77, 955-962.	7.3	49
13	Structural Characterization and Mechanical Properties of a Titanium Nitride-Based Nanolayer Prepared by Nitrogen Ion Implantation on a Titanium Alloy. Journal of Nanomaterials, 2016, 2016, 1-7.	2.7	8
14	Physico-chemical properties of PDMS surfaces suitable as substrates for cell cultures. Applied Surface Science, 2016, 389, 247-254.	6.1	34
15	Micromechanical Properties of Biocompatible Materials for Bone Tissue Engineering Produced by Direct 3D Printing. Key Engineering Materials, 2015, 662, 138-141.	0.4	2
16	Influence of diamond and graphite bonds on mechanical properties of DLC thin films. Journal of Physics: Conference Series, 2015, 594, 012008.	0.4	5
17	Nanoindentation studies and modeling of surface layers on austenitic stainless steels by extreme electrochemical treatments. Surface and Interface Analysis, 2015, 47, 643-647.	1.8	6
18	Elastic Properties of Human Osteon and Osteonal Lamella Computed by a Bidirectional Micromechanical Model and Validated by Nanoindentation. Journal of Biomechanical Engineering, 2015, 137, 081002.	1.3	7

#	Article	IF	CITATIONS
19	PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 13-22.	3.1	62
20	The microstructure and surface hardness of Ti6Al4V alloy implanted with nitrogen ions at an elevated temperature. Journal of Alloys and Compounds, 2015, 620, 48-54.	5 . 5	38
21	Mathematical model of human osteon and its validation by nanomechanical testing of bone lamella. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 24-25.	1.6	0
22	Compression tests of a living cell: a contact detection problem. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 40-41.	1.6	2
23	Studying the influence of nanodiamonds over the elasticity of polymer/nanodiamond composites for biomedical application. Journal of Physics: Conference Series, 2014, 558, 012060.	0.4	3
24	Mechanical properties of deep-sea molluscan shell. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 287-289.	1.6	7
25	Nanoindentation mapping reveals gradients in the mechanical properties of dental enamel in rat incisors. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 290-291.	1.6	4
26	The Effect of Nitrogen Ion Implantation on the Surface Properties of Ti6Al4V Alloy Coated by a Carbon Nanolayer. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	7
27	Characterization of the Interphase in Carbon Fiber Reinforced Polymeric Composite by a Modulus Mapping Test. Key Engineering Materials, 2013, 586, 253-256.	0.4	0
28	Crystallographic texture determines mechanical properties of molluscan nacre. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 292-293.	1.6	2
29	Mechanical and Tribological Properties of Carbon Thin Film with Tungsten Interlayer Prepared by Ion Beam Assisted Deposition. Journal of Materials, 2013, 2013, 1-4.	0.1	1
30	Nanoscale mechanical analysis of dental filling composite and its finite element modelling. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 261-262.	1.6	1
31	Dynamic nanoindentation of porcine spinal zygapophyseal joint cartilage. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 265-266.	1.6	0
32	Effect of Sterilization Processes on the Fiber/Matrix Interphase Properties of CF/PDMS Composite to be Used in Orthopaedics. Key Engineering Materials, 0, 586, 234-236.	0.4	1