Yong Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1688466/publications.pdf

Version: 2024-02-01

161609
31 54
n-index g-index
99 3501
99 3501
nes ranked citing authors

#	Article	IF	CITATIONS
1	Efficient production of d-glucosamine by diacetylchitobiose deacetylase catalyzed deacetylation of N-acetyl-d-glucosamine. Biotechnology Letters, 2022, 44, 473.	1.1	2
2	Converting the E. coli Isochorismatase Nicotinamidase into \hat{l}^3 -Lactamase. Microbiology Spectrum, 2022, 10, e0098521.	1.2	1
3	Inorganic phosphate self-sufficient whole-cell biocatalysts containing two co-expressed phosphorylases facilitate cellobiose production. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	1.4	5
4	Improved methylation in E. coli via an efficient methyl supply system driven by betaine. Metabolic Engineering, 2022, 72, 46-55.	3.6	20
5	<i>De Novo</i> Biosynthesis of Chlorogenic Acid Using an Artificial Microbial Community. Journal of Agricultural and Food Chemistry, 2021, 69, 2816-2825.	2.4	16
6	Highly Efficient Production of Menaquinone-7 from Glucose by Metabolically Engineered <i>Escherichia coli</i> . ACS Synthetic Biology, 2021, 10, 756-765.	1.9	14
7	Whole-Cell Biosensors Aid Exploration of Vanillin Transmembrane Transport. Journal of Agricultural and Food Chemistry, 2021, 69, 3114-3123.	2.4	10
8	Efficient bioconversion of raspberry ketone in Escherichia coli using fatty acids feedstocks. Microbial Cell Factories, 2021, 20, 68.	1.9	8
9	Microbial Ecological Mechanism for Long-Term Production of High Concentrations of <i>n</i> -Caproate via Lactate-Driven Chain Elongation. Applied and Environmental Microbiology, 2021, 87, .	1.4	20
10	Impact of low temperature on ex situ nitritation/in situ denitritation in field pilot-scale landfill for postclosure care of leachate treatment and gas content. Waste Management, 2021, 131, 61-71.	3.7	5
11	Butyryl/Caproyl-CoA:Acetate CoA-transferase: cloning, expression and characterization of the key enzyme involved in medium-chain fatty acid biosynthesis. Bioscience Reports, 2021, 41, .	1.1	9
12	Genome-Wide Transcriptomic Analysis of <i>n</i> -Caproic Acid Production in <i>Ruminococcaceae</i> Bacterium CPB6 with Lactate Supplementation. Journal of Microbiology and Biotechnology, 2021, 31, 1533-1544.	0.9	7
13	Highly efficient production of L-homoserine in Escherichia coli by engineering a redox balance route. Metabolic Engineering, 2021, 67, 321-329.	3.6	33
14	Production of Propionate by a Sequential Fermentation–Biotransformation Process via <scp>l</scp> -Threonine. Journal of Agricultural and Food Chemistry, 2021, 69, 13895-13903.	2.4	7
15	Production of isofloridoside from galactose and glycerol using α-galactosidase from Alicyclobacillus hesperidum. Enzyme and Microbial Technology, 2020, 134, 109480.	1.6	6
16	Transcriptional response of Pseudomonas chenduensis strain MBR to cadmium toxicity. Applied Microbiology and Biotechnology, 2020, 104, 9749-9757.	1.7	7
17	Reconstitution of the Ornithine Cycle with Arginine:Glycine Amidinotransferase to Engineer <i>Escherichia coli</i> into an Efficient Whole-Cell Catalyst of Guanidinoacetate. ACS Synthetic Biology, 2020, 9, 2066-2075.	1.9	7
18	Menaquinone-7 production in engineered Escherichia coli. World Journal of Microbiology and Biotechnology, 2020, 36, 132.	1.7	14

#	Article	IF	CITATIONS
19	De novo design of an intercellular signaling toolbox for multi-channel cellâ \in cell communication and biological computation. Nature Communications, 2020, 11, 4226.	5.8	58
20	Cloning and characterization of a l-lactate dehydrogenase gene from Ruminococcaceae bacterium CPB6. World Journal of Microbiology and Biotechnology, 2020, 36, 182.	1.7	11
21	Metabolic engineering of Escherichia coli for efficient production of l-alanyl-l-glutamine. Microbial Cell Factories, 2020, 19, 129.	1.9	10
22	Enhanced production of β-alanine through co-expressing two different subtypes of <scp>l</scp> -aspartate-α-decarboxylase. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 465-474.	1.4	23
23	Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nature Communications, 2020, 11, 1515.	5.8	57
24	Development of a highly efficient and specific l-theanine synthase. Applied Microbiology and Biotechnology, 2020, 104, 3417-3431.	1.7	15
25	Bio-production of high-purity propionate by engineering l-threonine degradation pathway in Pseudomonas putida. Applied Microbiology and Biotechnology, 2020, 104, 5303-5313.	1.7	13
26	Extension of Genetic Marker List Using Unnatural Amino Acid System: An Efficient Genomic Modification Strategy in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2020, 8, 145.	2.0	1
27	Efficient production of myo-inositol in Escherichia coli through metabolic engineering. Microbial Cell Factories, 2020, 19, 109.	1.9	21
28	Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Microbial Cell Factories, 2019, 18, 130.	1.9	62
29	Dynamics and potential roles of abundant and rare subcommunities in the bioremediation of cadmium-contaminated paddy soil by Pseudomonas chenduensis. Applied Microbiology and Biotechnology, 2019, 103, 8203-8214.	1.7	13
30	Isolating promoters from Corynebacterium ammoniagenes ATCC 6871 and application in CoA synthesis. BMC Biotechnology, 2019, 19, 76.	1.7	2
31	Lactobacillus plantarum PFM 105 Promotes Intestinal Development Through Modulation of Gut Microbiota in Weaning Piglets. Frontiers in Microbiology, 2019, 10, 90.	1.5	82
32	Thermostability improvement of the glucose oxidase from Aspergillus niger for efficient gluconic acid production via computational design. International Journal of Biological Macromolecules, 2019, 136, 1060-1068.	3.6	39
33	Production of d-glucuronic acid from myo-inositol using Escherichia coli whole-cell biocatalyst overexpressing a novel myo-inositol oxygenase from Thermothelomyces thermophile. Enzyme and Microbial Technology, 2019, 127, 70-74.	1.6	12
34	Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative \hat{l}^2 -alanine with high stoichiometric yield. Metabolic Engineering, 2019, 54, 244-254.	3.6	55
35	Enhancing the atypical esterase promiscuity of the \hat{I}^3 -lactamase Sspg from Sulfolobus solfataricus by substrate screening. Applied Microbiology and Biotechnology, 2019, 103, 4077-4087.	1.7	2
36	Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis. Nature Communications, 2019, 10, 960.	5.8	49

#	Article	IF	Citations
37	Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. Metabolic Engineering, 2019, 51, 121-130.	3.6	53
38	Crystal structure of IspF from Bacillus subtilis and absence of protein complex assembly amongst IspD/IspE/IspF enzymes in the MEP pathway. Bioscience Reports, 2018, 38, .	1.1	4
39	Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design. Applied Microbiology and Biotechnology, 2018, 102, 3675-3685.	1.7	40
40	Production of myo-inositol from glucose by a novel trienzymatic cascade of polyphosphate glucokinase, inositol 1-phosphate synthase and inositol monophosphatase. Enzyme and Microbial Technology, 2018, 112, 1-5.	1.6	31
41	Identification and Characterization of a Membrane-Bound Sesterterpene Cyclase from <i>Streptomyces somaliensis</i> Iournal of Natural Products, 2018, 81, 1089-1092.	1.5	24
42	Production of (R)-3-quinuclidinol by a whole-cell biocatalyst with high efficiency. Biocatalysis and Biotransformation, 2018, 36, 316-323.	1.1	2
43	Lactobacillus reuteri HCM2 protects mice against Enterotoxigenic Escherichia coli through modulation of gut microbiota. Scientific Reports, 2018, 8, 17485.	1.6	38
44	Computational redesign of enzymes for regio- and enantioselective hydroamination. Nature Chemical Biology, 2018, 14, 664-670.	3.9	137
45	Improvement of n-caproic acid production with Ruminococcaceae bacterium CPB6: selection of electron acceptors and carbon sources and optimization of the culture medium. Microbial Cell Factories, 2018, 17, 99.	1.9	28
46	Transcriptomic and Ectoine Analysis of Halotolerant Nocardiopsis gilva YIM 90087T Under Salt Stress. Frontiers in Microbiology, 2018, 9, 618.	1.5	25
47	Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresource Technology, 2018, 265, 563-567.	4.8	158
48	Effects of Pseudomonas chenduensis and biochar on cadmium availability and microbial community in the paddy soil. Science of the Total Environment, 2018, 640-641, 1034-1043.	3.9	55
49	Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. Applied and Environmental Microbiology, 2017, 83, .	1.4	72
50	Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresource Technology, 2017, 238, 706-715.	4.8	288
51	Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnology for Biofuels, 2017, 10, 102.	6.2	178
52	Whole-cell biocatalysts by design. Microbial Cell Factories, 2017, 16, 106.	1.9	254
53	Discovery and Characterization of a New Family of Diterpene Cyclases in Bacteria and Fungi. Angewandte Chemie - International Edition, 2017, 56, 4749-4752.	7.2	67
54	Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol. Metabolic Engineering, 2017, 44, 143-149.	3.6	68

#	Article	IF	Citations
55	Synthesis of Sialic Acids, Their Derivatives, and Analogs by Using a Whole ell Catalyst. Chemistry - A European Journal, 2017, 23, 15143-15149.	1.7	13
56	The functional potential and active populations of the pit mud microbiome for the production of Chinese strongâ€flavour liquor. Microbial Biotechnology, 2017, 10, 1603-1615.	2.0	81
57	Complete genome sequence of Ruminococcaceae bacterium CPB6: A newly isolated culture for efficient n -caproic acid production from lactate. Journal of Biotechnology, 2017, 259, 91-94.	1.9	39
58	Monitoring in vivo metabolic flux with a designed whole-cell metabolite biosensor of shikimic acid. Biosensors and Bioelectronics, 2017, 98, 457-465.	5.3	29
59	Avermectin biosynthesis: stable functional expression of branched chain α-keto acid dehydrogenase complex from Streptomyces avermitilis in Escherichia coli by selectively regulating individual subunit gene expression. Biotechnology Letters, 2017, 39, 1567-1574.	1.1	10
60	Engineering deacetoxycephalosporin C synthase as a catalyst for the bioconversion of penicillins. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 705-710.	1.4	7
61	The process-related dynamics of microbial community during a simulated fermentation of Chinese strong-flavored liquor. BMC Microbiology, 2017, 17, 196.	1.3	29
62	A structural and functional study on the 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase (IspD) from Bacillus subtilis. Scientific Reports, 2016, 6, 36379.	1.6	10
63	Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion. Microbial Cell Factories, 2016, 15, 96.	1.9	45
64	Whole-cell conversion of l-glutamic acid into gamma-aminobutyric acid by metabolically engineered Escherichia coli. SpringerPlus, 2016, 5, 591.	1.2	33
65	Characterization of UDP-glucose dehydrogenase from Pasteurella multocida CVCC 408 and its application in hyaluronic acid biosynthesis. Enzyme and Microbial Technology, 2016, 85, 64-70.	1.6	11
66	Production of Butyrate from Lactate by a Newly Isolated Clostridium sp. BPY5. Applied Biochemistry and Biotechnology, 2016, 179, 361-374.	1.4	45
67	Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic <i>Nocardiopsis xinjiangensis</i>). Journal of Proteome Research, 2016, 15, 68-85.	1.8	35
68	Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina. Journal of Environmental Sciences, 2016, 42, 210-214.	3.2	93
69	Clostridium liquoris sp. nov., isolated from a fermentation pit used for the production of Chinese strong-flavoured liquor. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 749-754.	0.8	24
70	The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production. Scientific Reports, 2015, 5, 14360.	1.6	152
71	Modification of targets related to the Entner–Doudoroff/pentose phosphate pathway route for methyl-d-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli. Microbial Cell Factories, 2015, 14, 117.	1.9	28
72	A novel approach for metabolic pathway optimization: Oligo-linker mediated assembly (OLMA) method. Journal of Biological Engineering, 2015, 9, 23.	2.0	25

#	Article	IF	CITATIONS
73	High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli. Microbial Cell Factories, 2015, 14, 55.	1.9	51
74	Characterization and homologous overexpression of an N-acetylglucosaminidase Nag1 from Trichoderma reesei. Biochemical and Biophysical Research Communications, 2015, 459, 184-188.	1.0	21
75	An Ime2-like mitogen-activated protein kinase is involved in cellulase expression in the filamentous fungus Trichoderma reesei. Biotechnology Letters, 2015, 37, 2055-2062.	1.1	23
76	Reconstitution of TCA cycle with DAOCS to engineer <i>Escherichia coli</i> into an efficient whole cell catalyst of penicillin G. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9855-9859.	3.3	30
77	Prokaryotic Communities in Pit Mud from Different-Aged Cellars Used for the Production of Chinese Strong-Flavored Liquor. Applied and Environmental Microbiology, 2014, 80, 2254-2260.	1.4	171
78	Lead ions removal from aqueous solution in a novel bioelectrochemical system with a stainless steel cathode. RSC Advances, 2014, 4, 41135-41140.	1.7	7
79	Pseudomonas chengduensis sp. nov., isolated from landfill leachate. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 95-100.	0.8	41
80	Involvement of SpoVG in hemolysis caused by Bacillus subtilis. Biochemical and Biophysical Research Communications, 2014, 443, 899-904.	1.0	14
81	Presence of Fe3+ and Zn2+ promoted biotransformation of Cd–citrate complex and removal of metals from solutions. Journal of Hazardous Materials, 2013, 263, 367-373.	6.5	19
82	Identification of a critical region in the Drosophila ryanodine receptor that confers sensitivity to diamide insecticides. Insect Biochemistry and Molecular Biology, 2013, 43, 820-828.	1.2	47
83	Metabolic Engineering for Acetate Control in Large Scale Fermentation. Methods in Molecular Biology, 2012, 834, 283-303.	0.4	6
84	(<i>S</i>)â€3â€aminopiperidineâ€2,6â€dione is a biosynthetic intermediate of microbial blue pigment indigoidine. , 0, , .		0
85	Fatty acid feedstocks enable a highly efficient glyoxylateâ€₹CA cycle for highâ€yield production of βâ€alanine. , 0, , .		3