Orson L Sydora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/168844/publications.pdf

Version: 2024-02-01

24 papers

807 citations

687363 13 h-index 25 g-index

26 all docs 26 docs citations

times ranked

26

783 citing authors

#	Article	IF	CITATIONS
1	Computational assessment and understanding of C6 product selectivity for chromium phosphinoamidine catalyzed ethylene trimerization. Journal of Organometallic Chemistry, 2022, 961, 122251.	1.8	2
2	Computational Evaluation and Design of Polyethylene Zirconocene Catalysts with Noncovalent Dispersion Interactions. Organometallics, 2022, 41, 581-593.	2.3	4
3	Chromium N-phosphinoamidine ethylene tri-/tetramerization catalysts: Designing a step change in 1-octene selectivity. Journal of Catalysis, 2021, 394, 444-450.	6.2	16
4	Why Less Coordination Provides Higher Reactivity Chromium Phosphinoamidine Ethylene Trimerization Catalysts. ACS Catalysis, 2020, 10, 9674-9683.	11.2	21
5	Quantum-mechanical transition-state model combined with machine learning provides catalyst design features for selective Cr olefin oligomerization. Chemical Science, 2020, 11, 9665-9674.	7.4	51
6	Synthetic investigations of low-coordinate (<i>N</i> -phosphino-amidinate) nickel chemistry: agostic alkyl complexes and benzene insertion into Ni–H. Dalton Transactions, 2020, 49, 4811-4816.	3.3	2
7	A comparative analysis of hydrosilative amide reduction catalyzed by first-row transition metal (Mn,) Tj ETQq $1\ 1$	0.784314 3.3	rgBT /Over
8	Challenge of Using Practical DFT to Model Fe Pendant Donor Diimine Catalyzed Ethylene Oligomerization. Journal of Physical Chemistry C, 2019, 123, 3727-3739.	3.1	8
9	Selective Ethylene Oligomerization. Organometallics, 2019, 38, 997-1010.	2.3	93
10	Computational Transition-State Design Provides Experimentally Verified Cr(P,N) Catalysts for Control of Ethylene Trimerization and Tetramerization. ACS Catalysis, 2018, 8, 1138-1142.	11.2	64
11	A homoleptic chromium(<scp>iii</scp>) carboxylate. Dalton Transactions, 2018, 47, 4790-4793.	3.3	8
12	Alkene Isomerizationâ€"Hydroboration Catalyzed by First-Row Transition-Metal (Mn, Fe, Co, and Ni) <i>N</i> Phosphinoamidinate Complexes: Origin of Reactivity and Selectivity. ACS Catalysis, 2018, 8, 9907-9925.	11.2	38
13	Mechanistic Insights into Chromium-Catalyzed Ethylene Trimerization. ACS Catalysis, 2018, 8, 6810-6819.	11.2	23
14	Dehydrogenative Bâ^'H/C(sp ³)â^'H Benzylic Borylation within the Coordination Sphere of Platinum(II). Angewandte Chemie, 2017, 129, 6409-6413.	2.0	5
15	Dehydrogenative Bâ^3H/C(sp ³)â^3H Benzylic Borylation within the Coordination Sphere of Platinum(II). Angewandte Chemie - International Edition, 2017, 56, 6312-6316.	13.8	16
16	Cobalt- and Iron-Catalyzed Isomerization–Hydroboration of Branched Alkenes: Terminal Hydroboration with Pinacolborane and 1,3,2-Diazaborolanes. Organometallics, 2017, 36, 417-423.	2.3	63
17	A Manganese Pre atalyst: Mild Reduction of Amides, Ketones, Aldehydes, and Esters. Angewandte Chemie - International Edition, 2017, 56, 15901-15904.	13.8	84
18	A Manganese Pre atalyst: Mild Reduction of Amides, Ketones, Aldehydes, and Esters. Angewandte Chemie, 2017, 129, 16117-16120.	2.0	16

#	Article	IF	CITATION
19	Synthesis and Reactivity of a Neutral, Threeâ€Coordinate Platinum(II) Complex Featuring Terminal Amido Ligation. Angewandte Chemie - International Edition, 2015, 54, 14498-14502.	13.8	10
20	Synthesis, structural characterization, and reactivity of Cp*Ru(N-phosphinoamidinate) complexes. Canadian Journal of Chemistry, 2014, 92, 194-200.	1.1	11
21	(<i>N</i> â€Phosphinoamidinate)cobaltâ€Catalyzed Hydroboration: Alkene Isomerization Affords Terminal Selectivity. Chemistry - A European Journal, 2014, 20, 13918-13922.	3.3	62
22	(<i>N</i> -Phosphinoamidinate)Iron Pre-Catalysts for the Room Temperature Hydrosilylation of Carbonyl Compounds with Broad Substrate Scope at Low Loadings. Organometallics, 2013, 32, 5581-5588.	2.3	110
23	Selective Ethylene Tri-/Tetramerization Catalysts. ACS Catalysis, 2012, 2, 2452-2455.	11.2	78
24	Density functional theory and <scp>CCSD</scp> (T) evaluation of ionization potentials, redox potentials, and bond energies related to zirconocene polymerization catalysts. Journal of Computational Chemistry, 0, , .	3.3	0