
Kim J Hasenkrug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1688276/publications.pdf Version: 2024-02-01

KIM I HASENKRUC

#	Article	IF	CITATIONS
1	CD47 expression attenuates Ebola virus-induced immunopathology in mice. Antiviral Research, 2022, 197, 105226.	4.1	2
2	CD47 Blockade Leads to Chemokine-Dependent Monocyte Infiltration and Loss of B Cells from the Splenic Marginal Zone. Journal of Immunology, 2022, 208, 1371-1377.	0.8	1
3	Detailed analysis of antibody responses to SARS-CoV-2 vaccination and infection in macaques. PLoS Pathogens, 2022, 18, e1010155.	4.7	6
4	B-Cell Control of Regulatory T Cells in Friend Virus Infection. Journal of Molecular Biology, 2021, 433, 166583.	4.2	3
5	Recovery from Acute SARS-CoV-2 Infection and Development of Anamnestic Immune Responses in T Cell-Depleted Rhesus Macaques. MBio, 2021, 12, e0150321.	4.1	28
6	Upregulation of CD47 Is a Host Checkpoint Response to Pathogen Recognition. MBio, 2020, 11, .	4.1	29
7	Immunotherapeutic Blockade of CD47 Inhibitory Signaling Enhances Innate and Adaptive Immune Responses to Viral Infection. Cell Reports, 2020, 31, 107494.	6.4	31
8	Qualitative Differences Between the IFNα subtypes and IFNβ Influence Chronic Mucosal HIV-1 Pathogenesis. PLoS Pathogens, 2020, 16, e1008986.	4.7	22
9	Title is missing!. , 2020, 16, e1008986.		0
10	Title is missing!. , 2020, 16, e1008986.		0
11	Title is missing!. , 2020, 16, e1008986.		0
12	Title is missing!. , 2020, 16, e1008986.		0
13	Title is missing!. , 2020, 16, e1008986.		0
14	Title is missing!. , 2020, 16, e1008986.		0
15	Different Biological Activities of Specific Interferon Alpha Subtypes. MSphere, 2019, 4, .	2.9	5
16	Effects of Friend Virus Infection and Regulatory T Cells on the Antigen Presentation Function of B Cells. MBio, 2019, 10, .	4.1	8
17	Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiology Reviews, 2019, 43, 435-456.	8.6	18
18	A functional subset of CD8+ T cells during chronic exhaustion is defined by SIRPα expression. Nature Communications, 2019, 10, 794.	12.8	46

Kim J Hasenkrug

#	Article	IF	CITATIONS
19	Concurrent administration of IFNα14 and cART in TKO-BLT mice enhances suppression of HIV-1 viremia but does not eliminate the latent reservoir. Scientific Reports, 2019, 9, 18089.	3.3	15
20	An advanced BLT-humanized mouse model for extended HIV-1 cure studies. Aids, 2018, 32, 1-10.	2.2	54
21	Regulatory T cells suppress virus-specific antibody responses to Friend retrovirus infection. PLoS ONE, 2018, 13, e0195402.	2.5	9
22	Pathogenicity of Ebola and Marburg Viruses Is Associated With Differential Activation of the Myeloid Compartment in Humanized Triple Knockout-Bone Marrow, Liver, and Thymus Mice. Journal of Infectious Diseases, 2018, 218, S409-S417.	4.0	19
23	Regulatory T cells in retroviral infections. PLoS Pathogens, 2018, 14, e1006776.	4.7	36
24	Adaptive Immune Responses to Zika Virus Are Important for Controlling Virus Infection and Preventing Infection in Brain and Testes. Journal of Immunology, 2017, 198, 3526-3535.	0.8	97
25	Fas Ligand-mediated cytotoxicity of CD4+ T cells during chronic retrovirus infection. Scientific Reports, 2017, 7, 7785.	3.3	23
26	B Cell Requirement for Robust Regulatory T Cell Responses to Friend Retrovirus Infection. MBio, 2017, 8, .	4.1	16
27	Type I interferon signaling is required for the APOBEC3/Rfv3-dependent neutralizing antibody response but not innate retrovirus restriction. Retrovirology, 2017, 14, 25.	2.0	6
28	Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID "Meet the Experts―2015 Workshop Summary. AIDS Research and Human Retroviruses, 2016, 32, 109-119.	1.1	57
29	Tetherin/BST-2 promotes dendritic cell activation and function during acute retrovirus infection. Scientific Reports, 2016, 6, 20425.	3.3	24
30	Interferon Alpha Subtype-Specific Suppression of HIV-1 Infection <i>In Vivo</i> . Journal of Virology, 2016, 90, 6001-6013.	3.4	114
31	No SEVI-mediated enhancement of rectal HIV-1 transmission of HIV-1 in two humanized mouse cohorts. Virology, 2016, 488, 88-95.	2.4	11
32	Stimulation of Toll-Like Receptors profoundly influences the titer of polyreactive antibodies in the circulation. Scientific Reports, 2015, 5, 15066.	3.3	24
33	Interferon-α Subtypes in an Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms. PLoS Pathogens, 2015, 11, e1005254.	4.7	84
34	CD8+ T Cells Are Essential for Controlling Acute Friend Retrovirus Infection in C57BL/6 Mice. Journal of Virology, 2014, 88, 5200-5201.	3.4	7
35	Production of bone marrow, liver, thymus (BLT) humanized mice on the C57BL/6 Rag2â^'/â^î ³ câ^'/â^CD47â^'/â^ background. Journal of Immunological Methods, 2014, 407, 127-134.	1.4	29
36	Tetherin Promotes the Innate and Adaptive Cell–Mediated Immune Response against Retrovirus Infection In Vivo. Journal of Immunology, 2014, 193, 306-316.	0.8	45

KIM J HASENKRUG

#	Article	IF	CITATIONS
37	Activated CD8+T Cells Induce Expansion of Vβ5+Regulatory T Cells via TNFR2 Signaling. Journal of Immunology, 2014, 193, 2952-2960.	0.8	34
38	Immunoglobulin somatic hypermutation by APOBEC3/Rfv3 during retroviral infection. Proceedings of the United States of America, 2014, 111, 7759-7764.	7.1	39
39	Mice of the resistant H-2b haplotype mount broad CD4+ T cell responses against 9 distinct Friend virus epitopes. Virology, 2014, 456-457, 139-144.	2.4	19
40	BLT-humanized C57BL/6 Rag2â^'/â^'γcâ^'/â^'CD47â^'/â^' mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection. Blood, 2013, 122, 4013-4020.	1.4	100
41	IFN-α Treatment Inhibits Acute Friend Retrovirus Replication Primarily through the Antiviral Effector Molecule Apobec3. Journal of Immunology, 2013, 190, 1583-1590.	0.8	21
42	CD4 ⁺ T Cells Develop Antiretroviral Cytotoxic Activity in the Absence of Regulatory T Cells and CD8 ⁺ T Cells. Journal of Virology, 2013, 87, 6306-6313.	3.4	31
43	IL-2–Independent and TNF-α–Dependent Expansion of Vβ5+ Natural Regulatory T Cells during Retrovirus Infection. Journal of Immunology, 2013, 190, 5485-5495.	0.8	32
44	A Single Nucleotide Polymorphism in Tetherin Promotes Retrovirus Restriction In Vivo. PLoS Pathogens, 2012, 8, e1002596.	4.7	42
45	Negative Impact of IFN-Î ³ on Early Host Immune Responses to Retroviral Infection. Journal of Immunology, 2012, 189, 2521-2529.	0.8	16
46	In Vitro and In Vivo Analyses of Regulatory T Cell Suppression of CD8+ T Cells. Methods in Molecular Biology, 2011, 707, 45-54.	0.9	1
47	Distinct roles of CD4+T cell subpopulations in retroviral immunity: lessons from the Friend virus mouse model. Retrovirology, 2011, 8, 76.	2.0	25
48	Complement Opsonization Enhances Friend Virus Infection of B Cells and Thereby Amplifies the Virus-Specific CD8+ T Cell Response. Journal of Virology, 2011, 85, 1151-1155.	3.4	10
49	Virus-Specific CD8+ T Cells Upregulate Programmed Death-1 Expression during Acute Friend Retrovirus Infection but Are Highly Cytotoxic and Control Virus Replication. Journal of Immunology, 2011, 187, 3730-3737.	0.8	74
50	Persistent Friend Virus Replication and Disease in <i>Apobec3</i> -Deficient Mice Expressing Functional B-Cell-Activating Factor Receptor. Journal of Virology, 2011, 85, 189-199.	3.4	21
51	Transient depletion of regulatory T cells in transgenic mice reactivates virus-specific CD8 ⁺ T cells and reduces chronic retroviral set points. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2420-2425.	7.1	94
52	Comment on "Premature Terminal Exhaustion of Friend Virus-Specific Effector CD8+ T Cells by Rapid Induction of Multiple Inhibitory Receptors― Journal of Immunology, 2010, 185, 1349.1-1349.	0.8	5
53	Complement as an Endogenous Adjuvant for Dendritic Cell-Mediated Induction of Retrovirus-Specific CTLs. PLoS Pathogens, 2010, 6, e1000891.	4.7	38

54 Why Study Mouse Retroviruses?. , 2010, , 27-30.

KIM J HASENKRUG

#	Article	IF	CITATIONS
55	Tissue-Specific Abundance of Regulatory T Cells Correlates with CD8+ T Cell Dysfunction and Chronic Retrovirus Loads. Journal of Immunology, 2009, 183, 1636-1643.	0.8	25
56	Effects of Acute and Chronic Murine Norovirus Infections on Immune Responses and Recovery from Friend Retrovirus Infection. Journal of Virology, 2009, 83, 13037-13041.	3.4	22
57	Retroviral immunology: lessons from a mouse model. Immunologic Research, 2009, 43, 160-166.	2.9	8
58	Lactate Dehydrogenase-Elevating Virus Induces Systemic Lymphocyte Activation via TLR7-Dependent IFNα Responses by Plasmacytoid Dendritic Cells. PLoS ONE, 2009, 4, e6105.	2.5	39
59	CD137 Costimulation of CD8+ T Cells Confers Resistance to Suppression by Virus-Induced Regulatory T Cells. Journal of Immunology, 2008, 180, 5267-5274.	0.8	44
60	Suppression of Acute Anti-Friend Virus CD8 ⁺ T-Cell Responses by Coinfection with Lactate Dehydrogenase-Elevating Virus. Journal of Virology, 2008, 82, 408-418.	3.4	75
61	<i>Apobec3</i> Encodes <i>Rfv3</i> , a Gene Influencing Neutralizing Antibody Control of Retrovirus Infection. Science, 2008, 321, 1343-1346.	12.6	127
62	The Leptin Connection: Regulatory T Cells and Autoimmunity. Immunity, 2007, 26, 143-145.	14.3	32
63	Immune Control and Prevention of Chronic Friend Retrovirus Infection. Frontiers in Bioscience - Landmark, 2007, 12, 1544.	3.0	44
64	HIV vaccine design: insights from live attenuated SIV vaccines. Nature Immunology, 2006, 7, 19-23.	14.5	235
65	The role of virus-induced regulatory T cells in immunopathology. Seminars in Immunopathology, 2006, 28, 51-62.	4.0	43
66	In Vitro Suppression of CD8+ T Cell Function by Friend Virus-Induced Regulatory T Cells. Journal of Immunology, 2006, 176, 3342-3349.	0.8	72
67	Effective treatment of retrovirus-induced suppression of antibody responses with CpG oligodeoxynucleotides. Journal of General Virology, 2005, 86, 3365-3368.	2.9	7
68	CD8 + T-Cell Dysfunction due to Cytolytic Granule Deficiency in Persistent Friend Retrovirus Infection. Journal of Virology, 2005, 79, 10619-10626.	3.4	75
69	Reduction of Retrovirus-Induced Immunosuppression by In Vivo Modulation of T Cells during Acute Infection. Journal of Virology, 2004, 78, 11641-11647.	3.4	46
70	Essential role for virus-neutralizing antibodies in sterilizing immunity against Friend retrovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12260-12265.	7.1	43
71	Functional Impairment of CD8+ T Cells by Regulatory T Cells during Persistent Retroviral Infection. Immunity, 2004, 20, 293-303.	14.3	296
72	Functional Impairment of CD8 T Cells by Regulatory T Cells during Persistent Retroviral Infection. Immunity, 2004, 20, 653.	14.3	3

Kim J Hasenkrug

#	Article	IF	CITATIONS
73	Temporal Effects of Gamma Interferon Deficiency on the Course of Friend Retrovirus Infection in Mice. Journal of Virology, 2002, 76, 2225-2232.	3.4	37
74	Essential Roles for CD8 + T Cells and Gamma Interferon in Protection of Mice against Retrovirus-Induced Immunosuppression. Journal of Virology, 2002, 76, 450-454.	3.4	48
75	CD4+ T Cells and Gamma Interferon in the Long-Term Control of Persistent Friend Retrovirus Infection. Journal of Virology, 2001, 75, 52-60.	3.4	50
76	Role of Interleukin-4 (IL-4), IL-12, and Gamma Interferon in Primary and Vaccine-Primed Immune Responses to Friend Retrovirus Infection. Journal of Virology, 2001, 75, 654-660.	3.4	45
77	The role of IL-5, IL-6 and IL-10 in primary and vaccine-primed immune responses to infection with Friend retrovirus (Murine leukaemia virus). Journal of General Virology, 2001, 82, 1349-1354.	2.9	19
78	Different Immunological Requirements for Protection Against Acute versus Persistent Friend Retrovirus Infections. Virology, 2000, 272, 177-182.	2.4	20
79	The Role of CD4 and CD8 T Cells in Recovery and Protection from Retroviral Infection: Lessons from the Friend Virus Model. Virology, 2000, 272, 244-249.	2.4	52
80	Major Histocompatibility Complex Class I Gene Controls the Generation of Gamma Interferon-Producing CD4 + and CD8 + T Cells Important for Recovery from Friend Retrovirus-Induced Leukemia. Journal of Virology, 2000, 74, 5363-5367.	3.4	26
81	Requirement for multiple lymphocyte subsets in protection by a live attenuated vaccine against retroviral infection. Nature Medicine, 1999, 5, 189-193.	30.7	98
82	Kinetics of the Development of Protective Immunity in Mice Vaccinated with a Live Attenuated Retrovirus. Journal of Virology, 1999, 73, 8435-8440.	3.4	23
83	Protection against Establishment of Retroviral Persistence by Vaccination with a Live Attenuated Virus. Journal of Virology, 1999, 73, 3753-3757.	3.4	29
84	Lymphocyte Deficiencies Increase Susceptibility to Friend Virus-Induced Erythroleukemia in <i>Fv-2</i> Genetically Resistant Mice. Journal of Virology, 1999, 73, 6468-6473.	3.4	48
85	Fine Mapping of the Friend Retrovirus Resistance Gene, <i>Rfv3</i> , on Mouse Chromosome 15. Journal of Virology, 1999, 73, 7848-7852.	3.4	25
86	Immunoprotective Determinants in Friend Murine Leukemia Virus Envelope Protein. Virology, 1998, 248, 66-73.	2.4	38
87	Characterization of a Live-Attenuated Retroviral Vaccine Demonstrates Protection via Immune Mechanisms. Journal of Virology, 1998, 72, 6554-6558.	3.4	71
88	Critical Role for CD4 ⁺ T Cells in Controlling Retrovirus Replication and Spread in Persistently Infected Mice. Journal of Virology, 1998, 72, 6559-6564.	3.4	119
89	Immunity to retroviral infection: The Friend virus model. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7811-7816.	7.1	121