You Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1688208/publications.pdf

Version: 2024-02-01

516215 500791 34 854 16 28 h-index citations g-index papers 34 34 34 1300 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Aggregate exposure pathways for microplastics (mpAEP): An evidence-based framework to identify research and regulatory needs. Water Research, 2022, 209, 117873.	5. 3	5
2	Ultraviolet B modulates gamma radiation-induced stress responses in Lemna minor at multiple levels of biological organisation. Science of the Total Environment, 2022, 846, 157457.	3.9	6
3	High-throughput analyses and Bayesian network modeling highlight novel epigenetic Adverse Outcome Pathway networks of DNA methyltransferase inhibitor mediated transgenerational effects. Journal of Hazardous Materials, 2021, 408, 124490.	6.5	7
4	AOP Report: Inhibition of Chitin Synthase 1 Leading to Increased Mortality in Arthropods. Environmental Toxicology and Chemistry, 2021, 40, 2112-2120.	2.2	14
5	Uranium accumulation and toxicokinetics in the crustacean Daphnia magna provide perspective to toxicodynamic responses. Aquatic Toxicology, 2021, 235, 105836.	1.9	6
6	Susceptibility of polar cod (Boreogadus saida) to a model carcinogen. Marine Environmental Research, 2021, 170, 105434.	1.1	0
7	AOP Report: Uncoupling of Oxidative Phosphorylation Leading to Growth Inhibition via Decreased Cell Proliferation. Environmental Toxicology and Chemistry, 2021, 40, 2959-2967.	2.2	9
8	Integrative assessment of low-dose gamma radiation effects on Daphnia magna reproduction: Toxicity pathway assembly and AOP development. Science of the Total Environment, 2020, 705, 135912.	3.9	36
9	Effects of artificial ultraviolet B radiation on the macrophyte Lemna minor: a conceptual study for toxicity pathway characterization. Planta, 2020, 252, 86.	1.6	7
10	De Novo Development of a Quantitative Adverse Outcome Pathway (qAOP) Network for Ultraviolet B (UVB) Radiation Using Targeted Laboratory Tests and Automated Data Mining. Environmental Science & Envi	4.6	22
11	Epigenetic, transcriptional and phenotypic responses in Daphnia magna exposed to low-level ionizing radiation. Environmental Research, 2020, 190, 109930.	3.7	10
12	In silico site-directed mutagenesis of the Daphnia magna ecdysone receptor identifies critical amino acids for species-specific and inter-species differences in agonist binding. Computational Toxicology, 2019, 12, 100091.	1.8	3
13	Epigenetic, transcriptional and phenotypic responses in two generations of Daphnia magna exposed to the DNA methylation inhibitor 5-azacytidine. Environmental Epigenetics, 2019, 5, dvz016.	0.9	28
14	Modes of action and adverse effects of gamma radiation in an aquatic macrophyte Lemna minor. Science of the Total Environment, 2019, 680, 23-34.	3.9	36
15	Transcriptomic analysis reveals dose-dependent modes of action of benzo(a)pyrene in polar cod (Boreogadus saida). Science of the Total Environment, 2019, 653, 176-189.	3.9	23
16	Linking mode of action of the model respiratory and photosynthesis uncoupler 3,5-dichlorophenol to adverse outcomes in Lemna minor. Aquatic Toxicology, 2018, 197, 98-108.	1.9	17
17	Deciphering the Combined Effects of Environmental Stressors on Gene Transcription: A Conceptual Approach. Environmental Science & Environmental Stressors on Gene Transcription: A Conceptual Approach. Environmental Science & Environmental Stressors on Gene Transcription: A Conceptual Approach. Environmental Science &	4.6	20
18	Gamma radiation induces dose-dependent oxidative stress and transcriptional alterations in the freshwater crustacean Daphnia magna. Science of the Total Environment, 2018, 628-629, 206-216.	3.9	27

#	Article	IF	CITATIONS
19	Ecdysteroid and juvenile hormone biosynthesis, receptors and their signaling in the freshwater microcrustacean Daphnia. Journal of Steroid Biochemistry and Molecular Biology, 2018, 184, 62-68.	1.2	46
20	Practical approaches to adverse outcome pathway development and weightâ€ofâ€evidence evaluation as illustrated by ecotoxicological case studies. Environmental Toxicology and Chemistry, 2017, 36, 1429-1449.	2.2	39
21	Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. Environmental Science & Eamp; Technology, 2017, 51, 4142-4157.	4.6	99
22	Mortality and transcriptional effects of inorganic mercury in the marine copepod <i>Calanus finmarchicus</i> . Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 845-861.	1.1	11
23	Release of chitobiase as an indicator of potential molting disruption in juvenile <i>Daphnia magna</i> exposed to the ecdysone receptor agonist 20-hydroxyecdysone. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 954-962.	1.1	16
24	Hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to gamma radiation and depleted uranium singly and in combination. Science of the Total Environment, 2016, 562, 270-279.	3.9	16
25	Whole-Organism Transcriptomic Analysis Provides Mechanistic Insight into the Acute Toxicity of Emamectin Benzoate in <i>Daphnia magna</i> . Environmental Science & Emp; Technology, 2016, 50, 11994-12003.	4.6	35
26	Individual and molecular level effects of produced water contaminants on nauplii and adult females of <i>Calanus finmarchicus </i> Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 585-601.	1.1	19
27	17α-Ethinylestradiol (EE2) effect on global gene expression in primary rainbow trout (Oncorhynchus) Tj ETQq1 I	l 0,78431	4 rgBT /Overl
28	Transcriptional changes in Atlantic salmon (Salmo salar) after embryonic exposure to road salt. Aquatic Toxicology, 2015, 169, 58-68.	1.9	12
29	Hepatic transcriptomic profiling reveals early toxicological mechanisms of uranium in Atlantic salmon (Salmo salar). BMC Genomics, 2014, 15, 694.	1.2	35
30	Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation. Aquatic Toxicology, 2014, 156, 52-64.	1.9	17
31	Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Marine Environmental Research, 2014, 96, 81-91.	1.1	140
32	Global transcriptional analysis of short-term hepatic stress responses in Atlantic salmon (Salmo) Tj ETQq0 0 0 rg	BT /Qverlo	ck 10 Tf 50 2
33	Early stress responses in Atlantic salmon (Salmo salar) exposed to environmentally relevant concentrations of uranium. Aquatic Toxicology, 2012, 112-113, 62-71.	1.9	43
34	Hepatic gene expression profile in brown trout (Salmo trutta) exposed to traffic related contaminants. Science of the Total Environment, 2011, 409, 1430-1443.	3.9	17