
Katarzyna Soliwoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1687759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lactoferrin-Functionalized Noble Metal Nanoparticles as New Antivirals for HSV-2 Infection. Microorganisms, 2022, 10, 110.	1.6	18
2	Silver Nanowires and Silanes in Hybrid Functionalization of Aramid Fabrics. Molecules, 2022, 27, 1952.	1.7	2
3	Antioxidant enzymes immobilized on gold and silver nanoparticles enhance DNA repairing systems of rat skin after exposure to ultraviolet radiation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 43, 102558.	1.7	3
4	Core/Shell Ag/SnO2 Nanowires for Visible Light Photocatalysis. Catalysts, 2022, 12, 30.	1.6	8
5	The First Step in Standardizing an Artificial Aging Protocol for Dental Composites—Evaluation of Basic Protocols. Molecules, 2022, 27, 3511.	1.7	9
6	Gold Nanoparticles as Effective ion Traps in Poly(dimethylsiloxane) Cross-Linked by Metal-Ligand Coordination. Molecules, 2022, 27, 3579.	1.7	1
7	A SnO ₂ shell for high environmental stability of Ag nanowires applied for thermal management. RSC Advances, 2021, 11, 4174-4185.	1.7	15
8	Systematic Studies of Gold Nanoparticles Functionalised with Thioglucose and its Cytotoxic Effect. ChemistrySelect, 2021, 6, 1230-1237.	0.7	1
9	The effect of immobilized antioxidant enzymes on the oxidative stress in UV-irradiated rat skin. Nanomedicine, 2020, 15, 23-39.	1.7	13
10	Facile synthesis of SnO2shell followed by microwave treatment for high environmental stability of Ag nanoparticles. RSC Advances, 2020, 10, 38424-38436.	1.7	4
11	<p>Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing</p> . International Journal of Nanomedicine, 2020, Volume 15, 4969-4990.	3.3	32
12	Tannic acid-modified silver nanoparticles enhance the anti-Acanthamoeba activity of three multipurpose contact lens solutions without increasing their cytotoxicity. Parasites and Vectors, 2020, 13, 624.	1.0	12
13	Cytotoxic effects in transformed and non-transformed human breast cell lines after exposure to silver nanoparticles in combination with selected aluminium compounds, parabens or phthalates. Journal of Hazardous Materials, 2020, 392, 122442.	6.5	15
14	Assessment of acute toxicological effects of molybdenum(IV) disulfide nano- and microparticles after single intratracheal administration in rats. Science of the Total Environment, 2020, 742, 140545.	3.9	8
15	Comparative analysis of biological effects of molybdenum(IV) sulfide in the form of nano- and microparticles on human hepatoma HepG2 cells grown in 2D and 3D models. Toxicology in Vitro, 2020, 68, 104931.	1.1	8
16	Combined effect of silver nanoparticles and aluminium chloride, butylparaben or diethylphthalate on the malignancy of MDA-MB-231 breast cancer cells and tumor-specific immune responses of human macrophages and monocyte-derived dendritic cells. Toxicology in Vitro, 2020, 65, 104774.	1.1	2
17	Differences in corona formation of catalase immobilised on gold and silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 125003.	2.3	4
18	The synthesis of monodisperse silver nanoparticles with plant extracts. Colloids and Surfaces B: Biointerfaces, 2019, 177, 19-24.	2.5	69

KATARZYNA SOLIWODA

#	Article	IF	CITATIONS
19	A Study of the Activity of Recombinant Mn-Superoxide Dismutase in the Presence of Gold and Silver Nanoparticles. Applied Biochemistry and Biotechnology, 2019, 187, 1551-1568.	1.4	14
20	Immobilization of Recombinant Human Catalase on Gold and Silver Nanoparticles. Applied Biochemistry and Biotechnology, 2018, 185, 717-735.	1.4	31
21	Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses, 2018, 10, 524.	1.5	94
22	Tannic acid-modified silver nanoparticles for wound healing: the importance of size. International Journal of Nanomedicine, 2018, Volume 13, 991-1007.	3.3	101
23	Comparison of the antioxidant activity of catalase immobilized on gold nanoparticles via specific and non-specific adsorption. Colloids and Surfaces B: Biointerfaces, 2018, 171, 707-714.	2.5	24
24	Tannic Acid-Modified Silver and Gold Nanoparticles as Novel Stimulators of Dendritic Cells Activation. Frontiers in Immunology, 2018, 9, 1115.	2.2	32
25	Interactions of hybrid gold–tannic acid nanoparticles with human serum albumin. European Biophysics Journal, 2017, 46, 49-57.	1.2	12
26	Printed Nonvolatile Resistive Memories Based on a Hybrid Organic/Inorganic Functional Ink. Advanced Materials Technologies, 2017, 2, 1700058.	3.0	6
27	A study on the in vitro percutaneous absorption of silver nanoparticles in combination with aluminum chloride, methyl paraben or di-n-butyl phthalate. Toxicology Letters, 2017, 272, 38-48.	0.4	34
28	Inhibitory effect of silver nanoparticles on proliferation of estrogen-dependent MCF-7/BUS human breast cancer cells induced by butyl paraben or di-n-butyl phthalate. Toxicology and Applied Pharmacology, 2017, 337, 12-21.	1.3	13
29	Catalase-modified gold nanoparticles: Determination of the degree of protein adsorption by gel electrophoresis. Colloids and Surfaces B: Biointerfaces, 2017, 159, 533-539.	2.5	11
30	Genotoxic effects in transformed and non-transformed human breast cell lines after exposure to silver nanoparticles in combination with aluminium chloride, butylparaben or di- n -butylphthalate. Toxicology in Vitro, 2017, 45, 181-193.	1.1	19
31	The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. Journal of Nanoparticle Research, 2017, 19, 273.	0.8	182
32	Tannic acid modification of metal nanoparticles: possibility for new antiviral applications. , 2017, , 335-363.		21
33	Versatile Phase Transfer Method for the Efficient Surface Functionalization of Gold Nanoparticles: Towards Controlled Nanoparticle Dispersion in a Polymer Matrix. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	5
34	Spectroscopic and electrochemical monitoring of band structure changes during the alloying of CdTe QDs by Hg ²⁺ ions. Materials Research Express, 2016, 3, 105046.	0.8	4
35	Toxicity of tannic acid-modified silver nanoparticles in keratinocytes: potential for immunomodulatory applications. Toxicology in Vitro, 2016, 35, 43-54.	1.1	23
36	Synthesis of silver nanoparticles from Metarhizium robertsii waste biomass extract after nonylphenol degradation, and their antimicrobial and catalytic potential. RSC Advances, 2016, 6, 21475-21485.	1.7	18

#	Article	IF	CITATIONS
37	Acoustic and volumetric studies on water + diethylene glycol mixtures in a wide temperature range. Comparison with mixtures of water with tri- and tetraethylene glycol. Journal of Molecular Liquids, 2016, 215, 520-533.	2.3	16
38	Synthesis of monodisperse gold nanoparticles via electrospray-assisted chemical reduction method in cyclohexane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 148-153.	2.3	28
39	Modification of gold and silver nanoparticles with n-dialkyldithiophosphates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 219-225.	2.3	7
40	Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites. Organic Electronics, 2015, 18, 17-23.	1.4	47
41	Electrospray deposition of gold nanoparticles from aqueous colloids on solid substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486, 211-217.	2.3	22
42	The influence of the chain length and the functional group steric accessibility of thiols on the phase transfer efficiency of gold nanoparticles from water to toluene. Polish Journal of Chemical Technology, 2014, 16, 86-91.	0.3	16
43	Honeycomb-structured porous poly(3,4-ethylenedioxythiophene) composite layers on a gold electrode. Thin Solid Films, 2014, 565, 54-61.	0.8	24
44	Effect of the Alkyl Chain Length of Secondary Amines on the Phase Transfer of Gold Nanoparticles from Water to Toluene. Langmuir, 2014, 30, 6684-6693.	1.6	27
45	The effect of the surface nanostructure and composition on the antiwear properties of zirconia–titania coatings. Ceramics International, 2013, 39, 1111-1123.	2.3	16
46	Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. Journal of Nanomaterials, 2013, 2013, 1-10.	1.5	331
47	The effect of the deposition parameters on size, distribution and antimicrobial properties of photoinduced silver nanoparticles on titania coatings. Applied Surface Science, 2011, 257, 7076-7082.	3.1	41
48	The effect of ceramic nanoparticles on tribological properties of alumina sol–gel thin coatings. Ceramics International, 2010, 36, 47-54.	2.3	30