Phillip A. Sprangle

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1687303/phillip-a-sprangle-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 108 264 13,219 h-index g-index papers citations 2.8 14,292 304 5.94 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
264	UV laser pulse trains for Raman spectroscopy. <i>Optics Letters</i> , 2021 , 46, 4867-4870	3	1
263	Remote detection of radioactive material using mid-IR laser-driven electron avalanche. <i>Science Advances</i> , 2019 , 5, eaav6804	14.3	13
262	Detecting radiation in a standoff geometry with mid-IR laser breakdown 2019 ,		1
261	Remote detection of radioactive material using optically induced air breakdown ionization 2019,		2
260	Effect of laser noise on the propagation of laser radiation in dispersive and nonlinear media. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2019 , 36, 346	1.7	1
259	Quadrupolar mode measurements for space charge dominated beams. <i>Physics of Plasmas</i> , 2018 , 25, 07	3107	
258	The effect of laser noise on the propagation of laser radiation in dispersive and nonlinear media 2018 ,		1
257	Proton acceleration in a slow wakefield. <i>Applied Physics Letters</i> , 2017 , 110, 024101	3.4	2
256	High-power lasers for directed-energy applications: reply. <i>Applied Optics</i> , 2017 , 56, 4825-4826	0.2	3
255	Pulse splitting of stimulated Raman backscattering with a chirped pump. <i>Physics of Plasmas</i> , 2017 , 24, 123113	2.1	3
254	Atmospheric propagation and combining of high-power lasers: reply. <i>Applied Optics</i> , 2016 , 55, 8338-83	390.2	3
253	An Optical Magnetometry Mechanism Above the Surface of Seawater. <i>IEEE Journal of Quantum Electronics</i> , 2016 , 52, 1-6	2	2
252	The free electron laser: conceptual history. <i>Physica Scripta</i> , 2016 , 91, 083003	2.6	16
251	Remote monostatic detection of radioactive material by laser-induced breakdown. <i>Physics of Plasmas</i> , 2016 , 23, 033507	2.1	14
250	Atmospheric propagation and combining of high-power lasers. <i>Applied Optics</i> , 2016 , 55, 1757-64	0.2	25
249	Multi variable control of filamentation of femtosecond laser pulses propagating in air. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2015 , 48, 094005	1.3	9
248	High-power lasers for directed-energy applications. <i>Applied Optics</i> , 2015 , 54, F201-9	0.2	71

(2012-2015)

247	Guiding supersonic projectiles using optically generated air density channels. <i>Journal of Applied Physics</i> , 2015 , 118, 123301	2.5	4
246	Undergraduate Education with the Rutgers 12-Inch Cyclotron. <i>Physics Procedia</i> , 2015 , 66, 622-631		5
245	Propagation of Bessel and Airy beams through atmospheric turbulence. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2014 , 31, 603-9	1.8	54
244	Active remote detection of radioactivity based on electromagnetic signatures. <i>Physics of Plasmas</i> , 2014 , 21, 013103	2.1	17
243	Extended lifetime of high density plasma filament generated by a dual femtosecond laser pulse in air. <i>New Journal of Physics</i> , 2014 , 16, 123046	2.9	31
242	High-power, high-intensity laser propagation and interactionsa). <i>Physics of Plasmas</i> , 2014 , 21, 055402	2.1	11
241	Remote atmospheric optical magnetometry. <i>Journal of Applied Physics</i> , 2014 , 116, 064902	2.5	6
240	Temporal evolution of femtosecond laser induced plasma filament in air and N2. <i>Applied Physics Letters</i> , 2013 , 103, 244102	3.4	13
239	Boron nitride plasma micro lens for high intensity laser pre-pulse suppression. <i>Optics Express</i> , 2013 , 21, 5077-85	3.3	3
238	Three-dimensional, time-dependent simulation of a regenerative amplifier free-electron laser. <i>Physical Review Special Topics: Accelerators and Beams</i> , 2013 , 16,		7
237	Development of a high average current rf linac thermionic injector. <i>Physical Review Special Topics:</i> Accelerators and Beams, 2013 , 16,		8
236	Enhanced proton acceleration by an ultrashort laser interaction with structured dynamic plasma targets. <i>Physical Review Letters</i> , 2013 , 110, 215004	7.4	60
235	A Gridded Thermionic Injector Gun for High-Average-Power Free-Electron Lasers. <i>IEEE Transactions on Plasma Science</i> , 2012 , 40, 1977-1983	1.3	4
234	On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials. <i>Journal of Applied Physics</i> , 2012 , 111, 124912	2.5	33
233	Propagation of gamma rays and production of free electrons in air. <i>Journal of Applied Physics</i> , 2012 , 112, 083303	2.5	14
232	The nonlinear OPC technique for laser beam control in turbulent atmosphere 2012 ,		2
231	Remote lasing in air by recombination and electron impact excitation of molecular nitrogen. <i>Journal of Applied Physics</i> , 2012 , 111, 033105	2.5	38
230	Laser heating of uncoated optics in a convective medium. <i>Applied Optics</i> , 2012 , 51, 2573-80	1.7	4

229	Range, resolution and power of THz systems for remote detection of concealed radioactive materials. <i>Journal of Applied Physics</i> , 2011 , 109, 083303	2.5	22
228	5.5-7.5 MeV proton generation by a moderate-intensity ultrashort-pulse laser interaction with H2O nanowire targets. <i>Physical Review Letters</i> , 2011 , 106, 134801	7.4	33
227	Remotely induced atmospheric lasing. <i>Applied Physics Letters</i> , 2011 , 98, 211102	3.4	53
226	High average current electron guns for high-power free electron lasers. <i>Physical Review Special Topics: Accelerators and Beams</i> , 2011 , 14,		17
225	Microwave diagnostics of femtosecond laser-generated plasma filaments. <i>Applied Physics Letters</i> , 2011 , 99, 141503	3.4	22
224	Standoff spectroscopy via remote generation of a backward-propagating laser beam. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 3130-4	11.5	113
223	Measurement & Simulation of Interpenetration and DC Accumulation of Beam in the University of Maryland Electron Ring 2010 ,		2
222	Propagation of ultrashort laser pulses in optically ionized gases. <i>Physics of Plasmas</i> , 2010 , 17, 023101	2.1	9
221	Terahertz generation in plasmas using two-color laser pulses. <i>Physical Review E</i> , 2010 , 81, 026407	2.4	41
220	Wall-Plug Efficiency and Beam Dynamics in Free-Electron Lasers Using Energy Recovery Linacs. <i>IEEE Journal of Quantum Electronics</i> , 2010 , 46, 1135-1144	2	4
219	Laser-pumped coherent x-ray free-electron laser. <i>Physical Review Special Topics: Accelerators and Beams</i> , 2009 , 12,		36
218	Optical quality of high-power laser beams in lenses. <i>Journal of the Optical Society of America B:</i> Optical Physics, 2009 , 26, 503	1.7	17
217	Absorption and scattering of 1.06 microm laser radiation from oceanic aerosols. <i>Applied Optics</i> , 2009 , 48, 6990-9	0.2	6
216	. IEEE Journal of Quantum Electronics, 2009 , 45, 138-148	2	78
215	. IEEE Journal of Quantum Electronics, 2009 , 45, 218-222	2	5
214	Effect of an energy reservoir on the atmospheric propagation of laser-plasma filaments. <i>Physical Review Letters</i> , 2008 , 100, 155003	7.4	29
213	(3+1)-dimensional numerical simulations of femtosecond laser filaments in air: toward a quantitative agreement with experiments. <i>Physical Review E</i> , 2008 , 77, 036406	2.4	37
212	Conductivity Measurements of Femtosecond LaserPlasma Filaments. <i>IEEE Transactions on Plasma Science</i> , 2007 , 35, 1430-1436	1.3	25

(2005-2007)

211	Pulse slippage in high-gain, optically guided free-electron lasers. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2007 , 581, 601-605	1.2	2	
210	GUIDING OF HIGH LASER INTENSITIES IN LONG PLASMA CHANNELS. <i>International Journal of Modern Physics B</i> , 2007 , 21, 361-371	1.1	1	
209	Electron density in low density capillary plasma channel. <i>Applied Physics Letters</i> , 2007 , 90, 061501	3.4	11	
208	Long plasma channels in segmented capillary discharges. <i>Physics of Plasmas</i> , 2006 , 13, 083108	2.1	11	
207	Direct measurements of the dynamics of self-guided femtosecond laser filaments in air. <i>IEEE Transactions on Plasma Science</i> , 2006 , 34, 249-253	1.3	8	
206	Tunable, high peak power terahertz radiation from optical rectification of a short modulated laser pulse. <i>Optics Express</i> , 2006 , 14, 6813-22	3.3	3	
205	Superconducting cavity driving with FPGA controller. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2006 , 568, 854-86	2 ^{1.2}	4	
204	Quasimonoenergetic electrons from unphased injection into channel guided laser wakefield accelerators. <i>Physical Review E</i> , 2005 , 71, 026404	2.4	38	
203	Trapping and acceleration of nonideal injected electron bunches in laser Wakefield accelerators. <i>IEEE Transactions on Plasma Science</i> , 2005 , 33, 712-722	1.3	14	
202	Generation of high-energy electrons in a double gas jet and laser wakefield acceleration. <i>IEEE Transactions on Plasma Science</i> , 2005 , 33, 735-738	1.3	3	
201	Direct characterization of self-guided femtosecond laser filaments in air. <i>Applied Optics</i> , 2005 , 44, 1474	-9 .7	23	
200	Remote atmospheric breakdown for standoff detection by using an intense short laser pulse. <i>Applied Optics</i> , 2005 , 44, 5315-20	1.7	12	
199	Characterization of the third-harmonic radiation generated by intense laser self-formed filaments propagating in air. <i>Optics Letters</i> , 2005 , 30, 1503-5	3	15	
198	Measurements of intense femtosecond laser pulse propagation in aira). <i>Physics of Plasmas</i> , 2005 , 12, 056705	2.1	18	
197	Transmission of intense femtosecond laser pulses into dielectrics. <i>Physical Review E</i> , 2005 , 72, 036412	2.4	60	
196	Generation and measurements of high energy injection electrons from the high density laser ionization and ponderomotive acceleration. <i>Physics of Plasmas</i> , 2005 , 12, 010701-010701-4	2.1	7	
195	First demonstration of a staged all-optical laser wakefield acceleration. <i>Physics of Plasmas</i> , 2005 , 12, 100702	2.1	22	
194	Longitudinal profiles of plasma parameters in a laser-ignited capillary discharge and implications for laser wakefield accelerator applications. <i>Applied Physics Letters</i> , 2005 , 87, 261501	3.4	15	

193	Longitudinal compression of short laser pulses in air. <i>Applied Physics Letters</i> , 2004 , 84, 4080-4082	3.4	24
192	Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. <i>Physical Review E</i> , 2004 , 69, 066415	2.4	165
191	Propagation of ultra-short, intense laser pulses in air. <i>Physics of Plasmas</i> , 2004 , 11, 2865-2874	2.1	56
190	Design of a compact, optically guided, pinched, megawatt class free-electron laser. <i>IEEE Journal of Quantum Electronics</i> , 2004 , 40, 1739-1743	2	9
189	Relativistic effects on intense laser beam propagation in plasma channels. <i>Physics of Plasmas</i> , 2003 , 10, 1483-1492	2.1	48
188	Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. <i>Physical Review Letters</i> , 2003 , 90, 215001	7.4	68
187	Stimulated Raman scattering of intense laser pulses in air. <i>Physical Review E</i> , 2003 , 68, 056502	2.4	30
186	Electron distribution function in short-pulse photoionization. <i>Physical Review E</i> , 2003 , 67, 056407	2.4	11
185	Spatially resolved interferometric measurement of a discharge capillary plasma channel. <i>Physics of Plasmas</i> , 2003 , 10, 4504-4512	2.1	8
184	Self-compensation for the axial velocity spread in a wiggler field. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2002 , 483, 534-536	1.2	
183	Raman forward scattering and self-modulation of laser pulses in tapered plasma channels. <i>Physical Review E</i> , 2002 , 66, 036402	2.4	15
182	Raman sidescatter in numerical models of short pulse laser plasma interactions. <i>Physics of Plasmas</i> , 2002 , 9, 1157-1163	2.1	10
181	GeV acceleration in tapered plasma channels. <i>Physics of Plasmas</i> , 2002 , 9, 2364-2370	2.1	34
180	Propagation of intense short laser pulses in the atmosphere. <i>Physical Review E</i> , 2002 , 66, 046418	2.4	198
179	High intensity focusing of laser pulses using a short plasma channel lens. <i>Physics of Plasmas</i> , 2002 , 9, 1431-1442	2.1	17
178	Requirements for a laser pumped FEL operating in the X-ray regime. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2001 , 475, 190-194	1.2	8
177	Measurements of energetic electrons from the high-intensity laser ionization of gases. <i>Physics of Plasmas</i> , 2001 , 8, 2481-2487	2.1	36
176	Apparent superluminal propagation of a laser pulse in a dispersive medium. <i>Physical Review E</i> , 2001 , 64, 026504	2.4	13

Simulation and design of stable channel-guided laser wakefield accelerators. <i>Physical Review E</i> , 2001 , 63, 036502	2.4	28	
Seeding of the forward Raman instability by ionization fronts and Raman backscatter. <i>Physical Review E</i> , 2001 , 64, 046404	2.4	28	
Progress in the development of a high average power ultra-broadband infrared radiation source. <i>IEEE Journal of Quantum Electronics</i> , 2001 , 37, 641-652	2	5	
Velocity control and staging in laser wakefield accelerators using segmented capillary discharges. <i>Applied Physics Letters</i> , 2001 , 78, 3175-3177	3.4	22	
Wakefield generation and GeV acceleration in tapered plasma channels. <i>Physical Review E</i> , 2001 , 63, 056405	2.4	95	
Measurement of forward Raman scattering and electron acceleration from high-intensity laserplasma interactions at 527 nm. <i>IEEE Transactions on Plasma Science</i> , 2000 , 28, 1122-1127	1.3	11	
Ultrashort free-electron laser pulse. <i>Physical Review E</i> , 2000 , 61, 5779-83	2.4	3	
Stable laser-pulse propagation in plasma channels for GeV electron acceleration. <i>Physical Review Letters</i> , 2000 , 85, 5110-3	7.4	51	
Transverse modulation of an electron beam generated in self-modulated laser wakefield accelerator experiments. <i>Physical Review E</i> , 2000 , 61, 788-92	2.4	6	
Laser pulse modulation instabilities in plasma channels. <i>Physical Review E</i> , 2000 , 61, 4381-93	2.4	73	
Relativistic focusing and ponderomotive channeling of intense laser beams. <i>Physical Review E</i> , 2000 , 62, 4120-5	2.4	121	
High efficiency guiding of terawatt subpicosecond laser pulses in a capillary discharge plasma channel. <i>Physical Review E</i> , 1999 , 59, R4769-72	2.4	62	
Propagation of finite length laser pulses in plasma channels. <i>Physical Review E</i> , 1999 , 59, 3614-3623	2.4	17	
Guiding and stability of short laser pulses in partially stripped ionizing plasmas. <i>Physics of Plasmas</i> , 1999 , 6, 1683-1689	2.1	20	
Analysis of Gaussian beam and Bessel beam driven laser accelerators. <i>Physical Review E</i> , 1999 , 60, 4779-	-9 <u>224</u>	32	
Dynamics of Short Laser Pulses Propagating in Plasma Channels. <i>Physical Review Letters</i> , 1999 , 82, 1173	3- 1 .1476	21	
A Laser-Accelerator Injector Based on Laser Ionization and Ponderomotive Acceleration of Electrons. <i>Physical Review Letters</i> , 1999 , 82, 1688-1691	7·4	105	
Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-/spl mu/m subpicosecond pulses the same as with 1 /spl mu/m?. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1999 , 5, 1453-1459	3.8	17	
	Seeding of the forward Raman instability by ionization fronts and Raman backscatter. <i>Physical Review E</i> , 2001, 64, 046404 Progress in the development of a high average power ultra-broadband infrared radiation source. <i>IEEE Journal of Quantum Electronics</i> , 2001, 37, 641-652 Velocity control and staging in laser wakefield accelerators using segmented capillary discharges. <i>Applied Physics Letters</i> , 2001, 78, 3175-3177 Wakefield generation and GeV acceleration in tapered plasma channels. <i>Physical Review E</i> , 2001, 63, 056405 Measurement of forward Raman scattering and electron acceleration from high-intensity laserplasma interactions at 527 nm. <i>IEEE Transactions on Plasma Science</i> , 2000, 28, 1122-1127 Ultrashort free-electron laser pulse. <i>Physical Review E</i> , 2000, 61, 5779-83 Stable laser-pulse propagation in plasma channels for GeV electron acceleration. <i>Physical Review Letters</i> , 2000, 85, 5110-3 Transverse modulation of an electron beam generated in self-modulated laser wakefield accelerator experiments. <i>Physical Review E</i> , 2000, 61, 788-92 Laser pulse modulation instabilities in plasma channels. <i>Physical Review E</i> , 2000, 61, 4381-93 Relativistic focusing and ponderomotive channeling of intense laser beams. <i>Physical Review E</i> , 2000, 62, 4120-5 High efficiency guiding of terawatt subpicosecond laser pulses in a capillary discharge plasma channel. <i>Physical Review E</i> , 1999, 59, 84769-72 Propagation of finite length laser pulses in plasma channels. <i>Physical Review E</i> , 1999, 59, 3614-3623 Guiding and stability of short laser pulses in partially stripped ionizing plasmas. <i>Physics of Plasmas</i> , 1999, 6, 1683-1689 Analysis of Gaussian beam and Bessel beam driven laser accelerators. <i>Physical Review Letters</i> , 1999, 82, 1688-1691 Dynamics of Short Laser Pulses Propagating in Plasma Channels. <i>Physical Review Letters</i> , 1999, 82, 1688-1691 Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-/spl mu/m subpicosecond pulses the	Seeding of the forward Raman instability by ionization fronts and Raman backscatter. Physical Review E, 2001, 64, 046404 Progress in the development of a high average power ultra-broadband infrared radiation source. IEEE Journal of Quantum Electronics, 2001, 37, 641-652 Velocity control and staging in laser wakefield accelerators using segmented capillary discharges. Applied Physics Letters, 2001, 78, 3175-3177 Wakefield generation and GeV acceleration in tapered plasma channels. Physical Review E, 2001, 83, 315-3175-3177 Wakefield generation and GeV acceleration in tapered plasma channels. Physical Review E, 2001, 23, 056405 Measurement of forward Raman scattering and electron acceleration from high-intensity laseriplasma interactions at 527 nm. IEEE Transactions on Plasma Science, 2000, 28, 1122-1127 Ultrashort free-electron laser pulse. Physical Review E, 2000, 61, 5779-83 2.4 Stable laser-pulse propagation in plasma channels for GeV electron acceleration. Physical Review Letters, 2000, 85, 5110-3 Transverse modulation of an electron beam generated in self-modulated laser wakefield accelerator experiments. Physical Review E, 2000, 61, 788-92 Laser pulse modulation instabilities in plasma channels. Physical Review E, 2000, 61, 4381-93 2.4 Relativistic focusing and ponderomotive channeling of intense laser beams. Physical Review E, 2000, 62, 4120-5 High efficiency guiding of terawatt subpicosecond laser pulses in a capillary discharge plasma channel. Physical Review E, 1999, 59, R4769-72 Propagation of finite length laser pulses in plasma channels. Physical Review E, 1999, 59, 3614-3623 2.4 Guiding and stability of short laser pulses in partially stripped ionizing plasmas. Physics of Plasmas, 1999, 6, 1683-1689 Analysis of Gaussian beam and Bessel beam driven laser accelerators. Physical Review E, 1999, 60, 4779-924 Dynamics of Short Laser Pulses Propagating in Plasma Channels. Physical Review Letters, 1999, 82, 1173-1176 A Laser-Accelerator Injector Based on Laser Ionization and Ponderomoti	Seeding of the forward Raman instability by ionization fronts and Raman backscatter. Physical Review E, 2001, 64, 046404 Progress in the development of a high average power ultra-broadband infrared radiation source. IEEE Journal of Quantum Electronics, 2001, 37, 641-652 2 5 Velocity control and starging in laser wakefield accelerators using segmented capillary discharges. Applied Physics Letters, 2001, 18, 3178-3177 Wakefield generation and GeV acceleration in tapered plasma channels. Physical Review E, 2001, 63, 056405 Measurement of Forward Raman scattering and electron acceleration from high-intensity laser@lasma interactions at 527 nm. IEEE Transactions on Plasma Science, 2000, 28, 1122-1127 Ultrashort free-electron laser pulse. Physical Review E, 2000, 61, 5779-83 2-4 3 Stable laser-pulse propagation in plasma channels for GeV electron acceleration. Physical Review Letters, 2000, 85, 5110-3 Transverse modulation of an electron beam generated in self-modulated laser wakefield accelerator experiments. Physical Review E, 2000, 61, 788-92 Laser pulse modulation instabilities in plasma channels. Physical Review E, 2000, 61, 4381-93 2-4 73 Relativistic focusing and ponderomotive channeling of intense laser beams. Physical Review E, 2000, 62, 4120-5 High efficiency guiding of terawatt subpicosecond laser pulses in a capillary discharge plasma 2-4 62 Propagation of finite length laser pulses in plasma channels. Physical Review E, 1999, 59, 3614-3623 2-4 177 Guiding and stability of short laser pulses in plasma channels. Physical Review E, 1999, 59, 3614-3623 Analysis of Gaussian beam and Bessel beam driven laser accelerators. Physical Review E, 1999, 60, 4779-924 Alaser-Accelerator Injector Based on Laser Ionization and Ponderomotive Acceleration of Electrons. Physical Review Letters, 1999, 82, 1173-1176 Electrons. Physical Review Letters, 1999, 82, 1688-1691 Is efficiency of gain generation in Lill III 13.5-nm laser with 0.25-/spl mu/m subpicosecond pulses the

157	Generation of high-average-power ultrabroad-band infrared pulses. <i>IEEE Journal of Quantum Electronics</i> , 1999 , 35, 565-576	2	13
156	Comparing efficiency of gain generation in Li III 13.5-nm laser with 0.25-th and 1-th subpicosecond pumping pulses 1999 ,		2
155	Guiding and damping of high-intensity laser pulses in long plasma channels. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1998 , 15, 2416	1.7	40
154	Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments. <i>Physical Review Letters</i> , 1997 , 78, 4047-4050	7.4	177
153	Vacuum beat wave acceleration. <i>Physical Review E</i> , 1997 , 55, 5924-5933	2.4	56
152	Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. <i>Physics of Plasmas</i> , 1997 , 4, 1889-1899	2.1	151
151	Ionization and pulse lethargy effects in inverse Cherenkov accelerators. <i>Physical Review E</i> , 1997 , 55, 596	5 4-5 97	5 7
150	Electron Injection into Plasma Wakefields by Colliding Laser Pulses. <i>Physical Review Letters</i> , 1997 , 79, 2682-2685	7.4	370
149	Laser-driven acceleration with Bessel beams. <i>Physical Review E</i> , 1997 , 55, 3539-3545	2.4	88
148	Electron Trapping in Self-Modulated Laser Wakefields by Raman Backscatter. <i>Physical Review Letters</i> , 1997 , 79, 3909-3912	7.4	116
147	Propagation and stability of intense laser pulses in partially stripped plasmas. <i>Physical Review E</i> , 1997 , 56, 5894-5907	2.4	49
146	Intense Laser Pulse Propagation and Stability in Partially Stripped Plasmas. <i>Physical Review Letters</i> , 1997 , 79, 1046-1049	7.4	54
145	Low-voltage infrared free-electron lasers based on gyrotron-powered RF wigglers. <i>IEEE Journal of Quantum Electronics</i> , 1997 , 33, 669-676	2	1
144	Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. <i>IEEE Journal of Quantum Electronics</i> , 1997 , 33, 1879-1914	2	362
143	Optical guiding of high-intensity laser pulses in a long plasma channel formed by a slow capillary discharge. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1996 , 13, 68	1.7	66
142	Overview of plasma-based accelerator concepts. <i>IEEE Transactions on Plasma Science</i> , 1996 , 24, 252-288	3 1.3	994
141	Guiding of High Intensity Laser Pulses in Straight and Curved Plasma Channel Experiments. <i>Physical Review Letters</i> , 1996 , 77, 4186-4189	7.4	257
140	Nonlinear Thomson scattering for off-axis interaction geometries. <i>Nuclear Instruments and Methods</i> in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,	1.2	5

139	Vacuum laser acceleration. Optics Communications, 1996, 124, 69-73	2	45
138	Laser driven electron acceleration in vacuum, gases, and plasmas. <i>Physics of Plasmas</i> , 1996 , 3, 2183-219	02.1	141
137	Temporal Evolution of Self-Modulated Laser Wakefields Measured by Coherent Thomson Scattering. <i>Physical Review Letters</i> , 1996 , 77, 5377-5380	7.4	62
136	Radiation generation by photoswitched, periodically biased semiconductors. <i>Physical Review E</i> , 1996 , 53, 6419-6426	2.4	10
135	Self-guiding and stability of intense optical beams in gases undergoing ionization. <i>Physical Review E</i> , 1996 , 54, 4211-4232	2.4	81
134	A microwave inverse free-electron-laser accelerator (MIFELA). <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1995 , 358, 129-130	1.2	2
133	Observation of 20 eV x-ray generation in a proof-of-principle laser synchrotron source experiment. <i>Journal of Applied Physics</i> , 1995 , 78, 575-577	2.5	31
132	Laser acceleration of electrons in vacuum. <i>Physical Review E</i> , 1995 , 52, 5443-5453	2.4	240
131	Theory and group velocity of ultrashort, tightly focused laser pulses. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1995 , 12, 1695	1.7	66
130	Electron Barkhausen oscillation as a possible source of kHz radiation from the neutral sheet of the Earth's magnetotail. <i>Physica Scripta</i> , 1994 , T52, 152-153	2.6	
129	Electron beam quality in a cyclotron autoresonance accelerator. <i>Physical Review E</i> , 1994 , 50, 3077-3086	2.4	20
128	Propagation of radius-tailored laser pulses over extended distances in a uniform plasma*. <i>Physics of Plasmas</i> , 1994 , 1, 1738-1743	2.1	37
127	Hose-Modulation Instability of Laser Pulses in Plasmas. <i>Physical Review Letters</i> , 1994 , 73, 3544-3547	7.4	92
126	A far-infrared grating free-electron laser. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1994 , 341, 269-273	1.2	1
125	Envelope analysis of intense laser pulse self-modulation in plasmas. <i>Physical Review Letters</i> , 1994 , 72, 2887-2890	7.4	172
124	. IEEE Transactions on Plasma Science, 1994 , 22, 666-673	1.3	1
123	Optically guided laser wake-field acceleration*. <i>Physics of Fluids B</i> , 1993 , 5, 2690-2697		100
122	Enhanced acceleration in a self-modulated-laser wake-field accelerator. <i>Physical Review E</i> , 1993 , 48, 215	5 2. 216	1130

121	Triggering the HF breakdown of the atmosphere by barium release. <i>Geophysical Research Letters</i> , 1993 , 20, 471-474	4.9	1
120	Nonlinear analysis of a magnicon output cavity. <i>Physics of Fluids B</i> , 1993 , 5, 3045-3055		10
119	Methods for conditioning electron beams in free-electron lasers. <i>Physical Review Letters</i> , 1993 , 70, 2896	5 -7 2 8 99	5
118	Electron beam quality limitations and beam conditioning in free electron lasers. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1993 , 331, 6-11	1.2	10
117	Laser synchrotron radiation as a compact source of tunable, short pulse hard X-rays. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1993 , 331, 545-549	1.2	20
116	Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. <i>Physical Review E</i> , 1993 , 48, 3003-3021	2.4	327
115	. IEEE Transactions on Plasma Science, 1993 , 21, 95-104	1.3	127
114	Interaction of ultrahigh laser fields with beams and plasmas. <i>Physics of Fluids B</i> , 1992 , 4, 2241-2248		163
113	Tunable, short pulse hard x-rays from a compact laser synchrotron source. <i>Journal of Applied Physics</i> , 1992 , 72, 5032-5038	2.5	148
112	Generation of stimulated backscattered harmonic radiation from intense-laser interactions with beams and plasmas. <i>Physical Review A</i> , 1992 , 45, 5872-5882	2.6	62
111	Nonlinear analysis of a grating free-electron laser. <i>Physical Review A</i> , 1992 , 45, 8846-8853	2.6	19
110	. IEEE Transactions on Plasma Science, 1992 , 20, 232-239	1.3	16
109	Propagation and guiding of intense laser pulses in plasmas. <i>Physical Review Letters</i> , 1992 , 69, 2200-2203	37.4	363
108	Harmonic generation in laser-pumped FELs and stimulated backscattering from plasmas. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1992 , 318, 533-537	1.2	
107	Effect of energy spread and gyromotion on efficiency of a Smith-Purcell FEL. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1992 , 318, 560-563	1.2	1
106	Stability regimes in a helical quadrupole focusing acceleratortheory and simulation. <i>Physics of Fluids B</i> , 1991 , 3, 204-211		4
105	Status report on the NIST-NRL free electron laser. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1991 , 304, 208-21	1 ^{1.2}	1
104	Comment on nondiffracting beams. <i>Physical Review Letters</i> , 1991 , 66, 837	7.4	41

103	Frequency up-shifting of laser pulses by copropagating ionization fronts. <i>Physical Review A</i> , 1991 , 44, 3908-3911	2.6	67
102	Elimination of laser prepulse by relativistic guiding in a plasma. <i>Applied Physics Letters</i> , 1991 , 58, 346-34	183.4	25
101	. IEEE Journal of Quantum Electronics, 1991 , 27, 2529-2538	2	2
100	Stimulated backscattered harmonic generation from intense laser interactions with beams and plasmas. <i>Physical Review Letters</i> , 1991 , 67, 2021-2024	7.4	78
99	Diffraction effects in directed radiation beams. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1991 , 8, 705	1.8	38
98	Radiation guiding and efficiency enhancement in the cyclotron autoresonance maser. <i>Physics of Fluids B</i> , 1990 , 2, 185-192		10
97	Review of quasi-optical gyrotron development. <i>Journal of Fusion Energy</i> , 1990 , 9, 31-58	1.6	33
96	The NIST-NRL free-electron-laser facility. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1990 , 296, 25-32	1.2	1
95	Effect of tapering on optical guiding and sideband growth in a finite-pulse free-electron laser. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 296, 442-447	1.2	2
94	Efficiency enhancement and optical guiding in a tapered high-power finite-pulse free-electron laser. <i>Physical Review Letters</i> , 1990 , 64, 180-183	7.4	16
93	Quasilinear theory of radiation saturation in a free-electron laser. <i>Journal of Applied Physics</i> , 1990 , 67, 3576-3581	2.5	4
92	Nonlinear interaction of intense laser pulses in plasmas. <i>Physical Review A</i> , 1990 , 41, 4463-4469	2.6	272
91	Nonlinear wake-field generation and relativistic focusing of intense laser pulses in plasmas. <i>Physics of Fluids B</i> , 1990 , 2, 1390-1394		91
90	Frequency shifts induced in laser pulses by plasma waves. <i>Physical Review A</i> , 1990 , 42, 3526-3531	2.6	80
89	Nonlinear theory of intense laser-plasma interactions. <i>Physical Review Letters</i> , 1990 , 64, 2011-2014	7.4	402
88	Radio-frequency linac-driven free-electron laser configurations. <i>Journal of Applied Physics</i> , 1989 , 66, 15	4 9. †55	556
87	New x-ray source for lithography. <i>Applied Physics Letters</i> , 1989 , 55, 2559-2560	3.4	19
86	. IEEE Journal of Quantum Electronics, 1989 , 25, 803-816	2	4

85	A review of free-electron lasers. <i>Physics of Fluids B</i> , 1989 , 1, 3-42		217
84	Guided radiation beams in free electron lasers. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1988 , 272, 536-542	1.2	6
83	The NBS/NRL free electron laser facility. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1988 , 272, 73-80	1.2	4
82	Reflection matrix for optical resonators in FEL oscillators. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1988 , 272, 543-550	1.2	8
81	Laser wakefield acceleration and relativistic optical guiding. <i>Applied Physics Letters</i> , 1988 , 53, 2146-214	83.4	422
80	Higher harmonic generation in the induced resonance electron cyclotron maser. <i>Physics of Fluids</i> , 1988 , 31, 924		2
79	Analysis of free electron laser performance utilizing the National Bureau of Standardsæw mictrotron. <i>Journal of Applied Physics</i> , 1988 , 63, 5233-5236	2.5	7
78	Development of sidebands in tapered and untapered free-electron lasers. <i>Physical Review A</i> , 1988 , 38, 197-203	2.6	30
77	Relativistic focusing and beat wave phase velocity control in the plasma beat wave accelerator. <i>Applied Physics Letters</i> , 1988 , 53, 1266-1268	3.4	66
76	Radiation focusing in the cyclotron autoresonance maser. <i>Physics of Fluids</i> , 1988 , 31, 3171		3
75	Small-signal analysis of the induced-resonance electron-cyclotron maser. <i>Physical Review A</i> , 1987 , 36, 197-201	2.6	6
74	Radiation focusing and guiding with application to the free electron laser. <i>Physical Review Letters</i> , 1987 , 59, 202-205	7.4	101
73	Optical gain, phase shift, and profile in free-electron lasers. <i>Physical Review A</i> , 1987 , 36, 1739-1746	2.6	29
72	Analysis of radiation focusing and steering in the free-electron laser by use of a source-dependent expansion technique. <i>Physical Review A</i> , 1987 , 36, 2773-2781	2.6	118
71	Relativistic Self-Focusing of Short-Pulse Radiation Beams in Plasmas. <i>IEEE Transactions on Plasma Science</i> , 1987 , 15, 145-153	1.3	246
70	Radiation focusing and guiding in the free electron laser. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1987 , 259, 136-142	1.2	2
69	Operation of the induced resonance electron cyclotron maser at higher harmonics. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1987 , 259, 192-197	1.2	4
68	Proposal for a free electron laser driven by the National Bureau of Standards' CW microtron. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 259, 259-262	1.2	6

67	Tapered wiggler analysis of high gain free electron laser oscillators. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1987 , 259, 210-218	1.2	4
66	Electron cyclotron harmonic wave acceleration. <i>Astrophysical Journal</i> , 1987 , 316, 462	4.7	17
65	Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes. <i>Astrophysical Journal</i> , 1987 , 322, 463	4.7	4
64	High gain free electron laser oscillators. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1986 , 250, 159-167	1.2	1
63	Proposal for FEL experiments driven by the National Bureau of Standards' CW microtron. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1986 , 250, 278-282	1.2	6
62	Induced Resonance Electron Cyclotron (IREC) quasi-optical maser. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1986 , 250, 361-365	1.2	16
61	Nonlinear analysis of a relativistic beam-plasma cyclotron instability. <i>Physical Review A</i> , 1986 , 33, 1261-7	269	10
60	Induced resonance electron cyclotron quasi-optical maser in an open resonator. <i>Applied Physics Letters</i> , 1986 , 49, 1154-1156	3.4	15
59	The evolution of spontaneous and coherent radiation in the free electron laser oscillator. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1985 , 237, 41-54	1.2	1
58	Resonance between betatron and synchrotron oscillations in a free electron laser: A 3-D numerical study. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1985, 237, 61-68	1.2	1
57	High-power two-stage FEL oscillator operating in the trapped particle mode. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1985 , 237, 154-157	1.2	8
56	Collective effects in the free electron laser. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 1985 , 239, 1-18	1.2	15
55	Dynamics of space-charge waves in the laser beat wave accelerator. <i>Physics of Fluids</i> , 1985 , 28, 1974		68
54	A free-electron laser with a rotating quadrupole wiggler. <i>Physics of Fluids</i> , 1985 , 28, 2273		17
53	Recent Rebatron Studies. <i>IEEE Transactions on Nuclear Science</i> , 1985 , 32, 3265-3267	1.7	2
52	Betatron-synchrotron detrapping in a tapered wiggler free-electron laser. <i>Physics of Fluids</i> , 1985 , 28, 2019		4
51	Ultra-High-Current Electron Induction Accelerators. <i>Physics Today</i> , 1985 , 38, 58-69	0.9	20
50	Novye istochniki moshchnogo kogerentnogo izlucheniya. <i>Uspekhi Fizicheskikh Nauk</i> , 1985 , 146, 303	0.5	2

49	Excitation of the plasma waves in the laser beat wave accelerator. Applied Physics Letters, 1984, 45, 375	5-3,747	47
48	Equilibrium of a high-current electron ring in a modified-betatron accelerator. <i>Physics of Fluids</i> , 1983 , 26, 1634		34
47	Three-dimensional theory of free electron lasers with an axial guide field. <i>IEEE Journal of Quantum Electronics</i> , 1983 , 19, 322-327	2	53
46	Unstable electrostatic beam modes in free-electron-laser systems. <i>Physical Review A</i> , 1983 , 28, 1835-18	3 7 .6	58
45	Resistive wall flute stability of magnetically guided relativistic electron beams. <i>Physics of Fluids</i> , 1983 , 26, 2689		2
44	Initiation of a Pulsed-Beam Free-Electron-Laser Oscillator. <i>Physical Review Letters</i> , 1983 , 50, 1775-1778	7.4	18
43	A Cyclotron Resonance Laser Accelerator. <i>IEEE Transactions on Nuclear Science</i> , 1983 , 30, 3177-3179	1.7	29
42	Evolution of spontaneous and coherent radiation in the free-electron-laser oscillator. <i>Physical Review A</i> , 1983 , 28, 2300-2309	2.6	40
41	Effect of fluctuating space-charge fields on sideband instabilities in free-electron lasers. <i>Physical Review A</i> , 1982 , 25, 3121-3129	2.6	4
40	Feasibility of dc to visible high-power conversion employing a stimulated Compton free electron laser with a waveguided CO2 laser pump wave and an axial electric field. <i>Journal of Applied Physics</i> , 1982 , 53, 124-129	2.5	25
39	Formulation of normalized nonlinear free electron laser equations. <i>Journal of Applied Physics</i> , 1982 , 53, 831-839	2.5	5
38	Linear and nonlinear electron cyclotron interaction in open resonators. <i>Physical Review A</i> , 1982 , 25, 931	-9.46	14
37	Collective effects on the operation of free-electron lasers with an axial guide field. <i>Physical Review A</i> , 1982 , 26, 2004-2015	2.6	78
36	Injection of a High-Current Beam into a Modified Betatron Accelerator. <i>Physical Review Letters</i> , 1982 , 49, 741-744	7.4	18
35	Three-dimensional nonlinear theory of the free electron laser. <i>Applied Physics Letters</i> , 1981 , 39, 677-679	93.4	80
34	A unified theory of magnetic bremsstrahlung, electrostatic bremsstrahlung, Compton-Raman scattering, and Cerenkov-Smith-Purcell free-electron lasers. <i>IEEE Journal of Quantum Electronics</i> , 1981 , 17, 1196-1215	2	115
33	A classical electron cyclotron quasioptical maser. <i>Applied Physics Letters</i> , 1981 , 38, 310-313	3.4	48
32	Nonlinear analysis of the free-electron lasers utilizing a linear wiggler field. <i>Journal of Applied Physics</i> , 1981 , 52, 3148-3153	2.5	14

31	Coherent and incoherent radiation from free-electron lasers with an axial guide field. <i>Physical Review A</i> , 1981 , 24, 1965-1979	2.6	59
30	A generalized formulation of free-electron lasers in the low-gain regime including transverse velocity spread and wiggler incoherence. <i>Journal of Applied Physics</i> , 1981 , 52, 599-604	2.5	8
29	Theory of the quasioptical electron cyclotron maser. <i>Physical Review A</i> , 1981 , 23, 3127-3138	2.6	59
28	Nonlinear theory of free-electron lasers and efficiency enhancement. <i>Physical Review A</i> , 1980 , 21, 302-	31 <u>8</u> 6	184
27	The nonlinear theory of efficiency enhancement in the electron cyclotron maser (gyrotron). <i>Journal of Applied Physics</i> , 1980 , 51, 3001-3007	2.5	35
26	Theory of free-electron lasers. <i>Physical Review A</i> , 1980 , 21, 293-301	2.6	164
25	The electron cyclotron maser as a high-power traveling wave amplifier of millimeter waves. <i>IEEE Journal of Quantum Electronics</i> , 1979 , 15, 848-853	2	54
24	Stimulated backscattering from relativistic unmagnetized electron beams. <i>Journal of Applied Physics</i> , 1979 , 50, 2652-2661	2.5	48
23	Nonlinear Formulation and Efficiency Enhancement of Free-Electron Lasers. <i>Physical Review Letters</i> , 1979 , 43, 1932-1936	7.4	96
22	Enhanced gain of a free-electron laser. <i>Physical Review A</i> , 1978 , 17, 1792-1793	2.6	24
21	Constant radius magnetic acceleration of a strong non-neutral proton ring. <i>Journal of Applied Physics</i> , 1978 , 49, 1-6	2.5	59
20	High-Power Microwaves from a Nonisochronic Reflecting Electron System. <i>Physical Review Letters</i> , 1977 , 39, 843-846	7.4	89
19	The Linear and Self-Consistent Nonlinear Theory of the Electron Cyclotron Maser Instability. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 1977 , 25, 528-544	4.1	209
18	Mechanisms for Coherent Scattering of Electromagnetic Waves from Relativistic Electron Beams. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 1977 , 25, 545-550	4.1	29
17	Excitation of electromagnetic waves from a rotating annular relativistic e-beam. <i>Journal of Applied Physics</i> , 1976 , 47, 2935-2940	2.5	47
16	Limitation in growth time of stimulated Compton scattering in x-ray regime. <i>Applied Physics Letters</i> , 1976 , 29, 542-544	3.4	31
15	Collective Ion Acceleration in a Converging Wave Guide. <i>Physical Review Letters</i> , 1976 , 36, 1180-1183	7.4	45
14	Realization of a relativistic mirror: Electromagnetic backscattering from the front of a magnetized relativistic electron beam. <i>Physical Review A</i> , 1976 , 14, 1194-1201	2.6	41

13	Coherent nonlinear theory of a cyclotron instability. <i>Physics of Fluids</i> , 1975 , 18, 224		63
12	Gigawatt microwave from an intense relativistic electron beam. <i>Plasma Physics</i> , 1975 , 17, 23-28		62
11	Saturation of the relativistic two-stream instability by electron trapping. <i>Physics of Fluids</i> , 1975 , 18, 475		20
10	Stimulated collective scattering from a magnetized relativistic electron beam. <i>Physical Review A</i> , 1975 , 12, 1697-1701	2.6	84
9	An electron synchrotron maser based on an intense relativistic electron beam. <i>Journal of Applied Physics</i> , 1975 , 46, 2021-2028	2.5	43
8	Microwave amplification with an intense relativistic electron beam. <i>Journal of Applied Physics</i> , 1975 , 46, 3800-3805	2 .5	49
7	Coherent synchrotron radiation from an intense relativistic electron beam. <i>IEEE Journal of Quantum Electronics</i> , 1974 , 10, 651-654	2	26
6	Stimulated cyclotron resonance scattering and production of powerful submillimeter radiation. Applied Physics Letters, 1974 , 25, 377-379	3-4	56
5	Enhanced Microwave Emission Due to the Transverse Energy of a Relativistic Electron Beam. Physical Review Letters, 1973, 31, 752-755	7 . 4	48
4	Conditions for the production of rotational annular beams of relativistic electrons using a cusped magnetic field. <i>Plasma Physics</i> , 1972 , 14, 207-209		8
3	Convergence of the perturbation theory expansion for spin-spin coupling constants. <i>Theoretica Chimica Acta</i> , 1970 , 18, 385-388		11
2	Simulation of accelerated electron spectra in laser wakefield accelerators		2