Jianxin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1686339/publications.pdf

Version: 2024-02-01

151 papers	2,017 citations	279798 23 h-index	315739 38 g-index
рирсто	Citations	II IIICX	g mucx
151 all docs	151 docs citations	151 times ranked	1487 citing authors

#	Article	IF	CITATIONS
1	Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode. Optics Express, 2006, 14, 7810.	3.4	156
2	Association of the Collagen Signature in the Tumor Microenvironment With Lymph Node Metastasis in Early Gastric Cancer. JAMA Surgery, 2019, 154, e185249.	4.3	90
3	Quantitatively linking collagen alteration and epithelial tumor progression by second harmonic generation microscopy. Applied Physics Letters, 2010, 96, .	3.3	78
4	Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. Theranostics, 2021, 11, 3229-3243.	10.0	60
5	Establishing diagnostic features for identifying the mucosa and submucosa of normal and cancerous gastric tissues by multiphoton microscopy. Gastrointestinal Endoscopy, 2011, 73, 802-807.	1.0	57
6	Label-Free Detection of Breast Masses Using Multiphoton Microscopy. PLoS ONE, 2013, 8, e65933.	2.5	55
7	Extracting diagnostic stromal organization features based on intrinsic two-photon excited fluorescence and second-harmonic generation signals. Journal of Biomedical Optics, 2009, 14, 020503.	2.6	52
8	The layered–resolved microstructure and spectroscopy of mouse oral mucosa using multiphoton microscopy. Physics in Medicine and Biology, 2007, 52, 4967-4980.	3.0	51
9	Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease. Journal of Biomedical Optics, 2011, 16, 051305.	2.6	50
10	Nearâ€Infraredâ€II Nanomaterials for Fluorescence Imaging and Photodynamic Therapy. Advanced Optical Materials, 2021, 9, 2002177.	7.3	48
11	Depth-resolved spectral imaging of rabbit oesophageal tissue based on two-photon excited fluorescence and second-harmonic generation. New Journal of Physics, 2007, 9, 212-212.	2.9	45
12	Label-free monitoring of colonic cancer progression using multiphoton microscopy. Biomedical Optics Express, 2011, 2, 615.	2.9	44
13	Cluster formulae for alloy phases. Philosophical Magazine Letters, 2010, 90, 683-688.	1.2	43
14	Twoâ€photon fluorescence and secondâ€harmonic generation imaging of collagen in human tissue based on multiphoton microscopy. Scanning, 2011, 33, 53-56.	1.5	43
15	Automated classification of hepatocellular carcinoma differentiation using multiphoton microscopy and deep learning. Journal of Biophotonics, 2019, 12, e201800435.	2.3	39
16	A pilot study of using multiphoton microscopy to diagnose gastric cancer. Surgical Endoscopy and Other Interventional Techniques, 2011, 25, 1425-1430.	2.4	38
17	Spectral characteristics of autofluorescence and second harmonic generation from ex vivo human skin induced by femtosecond laser and visible lasers. Scanning, 2006, 28, 319-326.	1.5	34
18	Spectroscopic characterization and microscopic imaging of extracted and ⟨i⟩in situ⟨/i⟩ cutaneous collagen and elastic tissue components under twoâ€photon excitation. Skin Research and Technology, 2009, 15, 418-426.	1.6	34

#	Article	IF	CITATIONS
19	Depth-cumulated epithelial redox ratio and stromal collagen quantity as quantitative intrinsic indicators for differentiating normal, inflammatory, and dysplastic epithelial tissues. Applied Physics Letters, 2010, 97, 173701.	3.3	34
20	Real-time optical diagnosis for surgical margin in low rectal cancer using multiphoton microscopy. Surgical Endoscopy and Other Interventional Techniques, 2014, 28, 36-41.	2.4	32
21	Multiphoton microscopic imaging of histological sections without hematoxylin and eosin staining differentiates carcinoma <i>in situ</i> lesion from normal oesophagus. Applied Physics Letters, 2013, 103, .	3.3	31
22	Label-Free Imaging of Basement Membranes Differentiates Normal, Precancerous, and Cancerous Colonic Tissues by Second-Harmonic Generation Microscopy. PLoS ONE, 2012, 7, e38655.	2.5	30
23	Slide-free virtual histochemistry (Part I): development via nonlinear optics. Biomedical Optics Express, 2018, 9, 5240.	2.9	29
24	Slide-free virtual histochemistry (Part II): detection of field cancerization. Biomedical Optics Express, 2018, 9, 5253.	2.9	27
25	Quantified characterization of human cutaneous normal scar using multiphoton microscopy. Journal of Biophotonics, 2010, 3, 108-116.	2.3	25
26	Visualizing extracellular matrix and sensing fibroblasts metabolism in human dermis by nonlinear spectral imaging. Skin Research and Technology, 2007, 13, 406-411.	1.6	23
27	Multiphoton microscopy of unstained bladder mucosa based on two-photon excited autofluorescence and second harmonic generation. Laser Physics Letters, 2009, 6, 80-83.	1.4	22
28	Computer-assisted quantification of tumor-associated collagen signatures to improve the prognosis prediction of breast cancer. BMC Medicine, 2021, 19, 273.	5.5	22
29	Multiphoton microscopy for label-free identification of intramural metastasis in human esophageal squamous cell carcinoma. Biomedical Optics Express, 2017, 8, 3360.	2.9	20
30	Simultaneous label-free autofluorescence-multiharmonic microscopy and beyond. APL Photonics, 2019, 4, .	5.7	20
31	Multimodal multiphoton imaging for label-free monitoring of early gastric cancer. BMC Cancer, 2019, 19, 295.	2.6	20
32	Recent advances in multiphoton microscopy combined with nanomaterials in the field of disease evolution and clinical applications to liver cancer. Nanoscale, 2019, 11, 19619-19635.	5.6	20
33	Two-layered multiphoton microscopic imaging of cervical tissue. Lasers in Medical Science, 2009, 24, 359-363.	2.1	19
34	Visualization of basement membranes in normal breast and breast cancer tissues using multiphoton microscopy. Oncology Letters, 2016, 11, 3785-3789.	1.8	19
35	Realâ€time noninvasive optical diagnosis for colorectal cancer using multiphoton microscopy. Scanning, 2012, 34, 181-185.	1.5	18
36	Real-time optical diagnosis of gastric cancer with serosal invasion using multiphoton imaging. Scientific Reports, 2016, 6, 31004.	3.3	18

#	Article	IF	Citations
37	Label-free multiphoton imaging and photoablation of preinvasive cancer cells. Applied Physics Letters, 2012, 100, .	3.3	16
38	Evaluation of Barrett Esophagus by Multiphoton Microscopy. Archives of Pathology and Laboratory Medicine, 2014, 138, 204-212.	2.5	15
39	Label-free classification of hepatocellular-carcinoma grading using second harmonic generation microscopy. Biomedical Optics Express, 2018, 9, 3783.	2.9	15
40	Multiphoton imaging provides a superior optical biopsy to that of confocal laser endomicroscopy imaging for colorectal lesions. Endoscopy, 2019, 51, 174-178.	1.8	15
41	Characteristics of scar margin dynamic with time based on multiphoton microscopy. Lasers in Medical Science, 2011, 26, 239-245.	2.1	14
42	Labelâ€free imaging characteristics of colonic mucinous adenocarcinoma using multiphoton microscopy. Scanning, 2013, 35, 277-282.	1.5	14
43	Epithelium segmentation and automated Gleason grading of prostate cancer via deep learning in labelâ€free multiphoton microscopic images. Journal of Biophotonics, 2020, 13, e201900203.	2.3	14
44	Prognostic value of tumour-infiltrating lymphocytes based on the evaluation of frequency in patients with oestrogen receptor–positive breast cancer. European Journal of Cancer, 2021, 154, 217-226.	2.8	14
45	Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging. Scanning, 2011, 33, 195-200.	1.5	13
46	Detecting the imaging characteristics of colorectal carcinoma invading the muscularis propria with multiphoton microscopy. Laser Physics Letters, 2012, 9, 155-159.	1.4	13
47	Layer-resolved colorectal tissues using nonlinear microscopy. Lasers in Medical Science, 2015, 30, 1589-1597.	2.1	13
48	Monitoring morphological alterations during invasive ductal breast carcinoma progression using multiphoton microscopy. Lasers in Medical Science, 2015, 30, 1109-1115.	2.1	13
49	Rapid, labelâ€free identification of cerebellar structures using multiphoton microscopy. Journal of Biophotonics, 2017, 10, 1617-1626.	2.3	13
50	Emerging Lowâ€Dimensional Nanoagents for Bioâ€Microimaging. Advanced Functional Materials, 2020, 30, 2003147.	14.9	13
51	Multiphoton microscopic imaging of esophagus during the early phase of tumor progression. Scanning, 2013, 35, 387-391.	1.5	12
52	Differentiating the two main histologic categories of fibroadenoma tissue from normal breast tissue by using multiphoton microscopy. Journal of Microscopy, 2015, 258, 79-85.	1.8	12
53	Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy. Laser Physics Letters, 2017, 14, 105401.	1.4	12
54	Multiphoton microscopic imaging of adipose tissue based on secondâ€harmonic generation and twoâ€photon excited fluorescence. Scanning, 2008, 30, 452-456.	1.5	11

#	Article	IF	CITATIONS
55	Multiphoton microscopy as a diagnostic imaging modality for pancreatic neoplasms without hematoxylin and eosin stains. Journal of Biomedical Optics, 2014, 19, 096008.	2.6	11
56	Identification of dirty necrosis in colorectal carcinoma based on multiphoton microscopy. Journal of Biomedical Optics, 2014, 19, 066008.	2.6	11
57	Automated labelâ€free detection of injured neuron with deep learning by twoâ€photon microscopy. Journal of Biophotonics, 2020, 13, e201960062.	2.3	10
58	Characteristics of dynamic alignment for diatomic and linear triatomic molecules in intense femtosecond laser fields. International Journal of Mass Spectrometry, 2005, 243, 155-161.	1.5	9
59	Sequential Multitrack Nonlinear <i>Ex vivo</i> Imaging of Esophageal Stroma Based on Backscattered Secondâ€harmonic Generation and Twoâ€photon Autofluorescence. Scanning, 2007, 29, 219-224.	1.5	9
60	Assessment of Tumor Invasion Depth in Colorectal Carcinoma Using Multiphoton Microscopy. IEEE Photonics Journal, $2015, 7, 1-8$.	2.0	9
61	Label-Free Imaging of Blood Vessels in Human Normal Breast and Breast Tumor Tissue Using Multiphoton Microscopy. Scanning, 2019, 2019, 1-8.	1.5	9
62	Quantitative assessment of microenvironment characteristics and metabolic activity in glioma via multiphoton microscopy. Journal of Biophotonics, 2019, 12, e201900136.	2.3	9
63	Margin diagnosis for endoscopic submucosal dissection of early gastric cancer using multiphoton microscopy. Surgical Endoscopy and Other Interventional Techniques, 2020, 34, 408-416.	2.4	9
64	Label-free multiphoton imaging to assess neoadjuvant therapy responses in breast carcinoma. International Journal of Biological Sciences, 2020, 16, 1376-1387.	6.4	9
65	Prediction of the consistency of pituitary adenomas based on multiphoton microscopy. Journal Physics D: Applied Physics, 2019, 52, 185401.	2.8	8
66	Evaluation of breast carcinoma regression after preoperative chemotherapy by labelâ€free multiphoton imaging and image analysis. Journal of Biophotonics, 2020, 13, e201900216.	2.3	8
67	A Virtual Laboratory for Temporal Bone Microanatomy. Computing in Science and Engineering, 2005, 7, 75-79.	1.2	7
68	Monitoring the progression from intraductal carcinoma to invasive ductal carcinoma based on multiphoton microscopy. Journal of Biomedical Optics, 2015, 20, 096007.	2.6	7
69	Detection of morphologic alterations in rectal carcinoma following preoperative radiochemotherapy based on multiphoton microscopy imaging. BMC Cancer, 2015, 15, 142.	2.6	7
70	Visualization of Tumor Response to Neoadjuvant Therapy for Rectal Carcinoma by Nonlinear Optical Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 158-163.	2.9	7
71	Identifying the neck margin status of ductal adenocarcinoma in the pancreatic head by multiphoton microscopy. Scientific Reports, 2017, 7, 4586.	3.3	7
72	Label-Free Identification of Early Stages of Breast Ductal Carcinoma via Multiphoton Microscopy. Scanning, 2020, 2020, 1-8.	1.5	7

#	Article	IF	Citations
73	Label-free multiphoton imaging of \hat{l}^2 -amyloid plaques in Alzheimerâ \in ^M s disease mouse models. Neurophotonics, 2019, 6, 1.	3.3	7
74	Quantitative analysis of collagen change between normal and cancerous thyroid tissues based on SHG method. Proceedings of SPIE, 2012 , , .	0.8	6
75	Multiphoton microscopic imaging of <i>in vivo</i> hair mouse skin based on twoâ€photon excited fluorescence and second harmonic generation. Scanning, 2012, 34, 170-173.	1.5	6
76	MULTIPHOTON MICROSCOPIC IMAGING OF MOUSE INTESTINAL MUCOSA BASED ON TWO-PHOTON EXCITED FLUORESCENCE AND SECOND HARMONIC GENERATION. Journal of Innovative Optical Health Sciences, 2013, 06, 1350004.	1.0	6
77	Identifying three different architectural subtypes of mammary ductal carcinoma <i>in situ</i> using multiphoton microscopy. Journal Physics D: Applied Physics, 2015, 48, 405401.	2.8	6
78	Optical diagnosis of gallbladder cancers via two-photon excited fluorescence imaging of unstained histological sections. Lasers in Medical Science, 2015, 30, 225-233.	2.1	6
79	Labelâ€free detection of fibrillar collagen deposition associated with vascular elements in glioblastoma multiforme by using multiphoton microscopy. Journal of Microscopy, 2017, 265, 207-213.	1.8	6
80	Identifying Two Common Types of Breast Benign Diseases Based on Multiphoton Microscopy. Scanning, 2018, 2018, 1-6.	1.5	6
81	Automatic and labelâ€free identification of blood vessels in gliomas using the combination of multiphoton microscopy and image analysis. Journal of Biophotonics, 2019, 12, e201900006.	2.3	6
82	Assessment of colloid response by nonlinear optical microscopy after preoperative radiochemotherapy for rectal carcinoma. Journal of Biomedical Optics, 2014, 20, 051009.	2.6	5
83	Imaging normal and cancerous human gastric muscular layer in transverse and longitudinal sections by multiphoton microscopy. Scanning, 2016, 38, 357-364.	1.5	5
84	Multiphoton imaging of low grade, high grade intraepithelial neoplasia and intramucosal invasive cancer of esophagus. Laser Physics Letters, 2017, 14, 045402.	1.4	5
85	Optical Visualization of Cerebral Cortex by Label-Free Multiphoton Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8.	2.9	5
86	Facile synthesis of Silicon quantum dot-Gadolinium: A potential fluorescent/T1-T2 multimodal imaging agent. Talanta, 2019, 199, 336-346.	5.5	5
87	Label-free detection of residual breast cancer after neoadjuvant chemotherapy using biomedical multiphoton microscopy. Lasers in Medical Science, 2019, 34, 1595-1601.	2.1	5
88	Label-free detection of brain invasion in meningiomas by multiphoton microscopy. Laser Physics Letters, 2019, 16, 015603.	1.4	5
89	Inâ€vivo twoâ€photon visualization and quantitative detection of redox state of cancer. Journal of Biophotonics, 2022, 15, e202100357.	2.3	5
90	Identifying and quantifying the stromal fibrosis in muscularis propria of colorectal carcinoma by multiphoton microscopy. Laser Physics Letters, 2014, 11, 105604.	1.4	4

#	Article	IF	Citations
91	Label-free distinguishing between neurons and glial cells based on two-photon excited fluorescence signal of neuron perinuclear granules. Laser Physics Letters, 2016, 13, 085603.	1.4	4
92	Diagnosing pituitary adenoma in unstained sections based on multiphoton microscopy. Pituitary, 2018, 21, 362-370.	2.9	4
93	Spatial and temporal identification of cerebral infarctions based on multiphoton microscopic imaging. Biomedical Optics Express, 2018, 9, 2312.	2.9	4
94	Label-Free Assessment of Premalignant Gastric Lesions Using Multimodal Nonlinear Optical Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.	2.9	4
95	Mapping Organizational Changes of Fiberâ€Like Structures in Disease Progression by Multiparametric, Quantitative Imaging. Laser and Photonics Reviews, 2022, 16, .	8.7	4
96	Autofluorescence spectroscopy and imaging of Platymonas subcordiformisir radiated by diode laser based on LSCM. Scanning, 2008, 30, 443-447.	1.5	3
97	Visualization of Epidermal and Dermal Alteration in Papulonodular Mucinosis by Multiphoton Microscopy. Scanning, 2013, 35, 22-27.	1.5	3
98	Nonlinear optical microscopy for label-free detection of gastrointestinal neuroendocrine tumors. Lasers in Medical Science, 2016, 31, 1285-1291.	2.1	3
99	A novel low-signal image enhancement method for multiphoton microscopy. Journal Physics D: Applied Physics, 2019, 52, 285401.	2.8	3
100	Visualize and quantify the structural alteration of the rat spinal cord injury based on multiphoton microscopy. Lasers in Medical Science, 2019, 34, 561-569.	2.1	3
101	Label-Free Identification of Early Gastrointestinal Neuroendocrine Tumors via Biomedical Multiphoton Microscopy and Automatic Image Analysis. IEEE Access, 2020, 8, 105681-105689.	4.2	3
102	Visualization of lymphatic vascular invasion in breast cancer by multiphoton microscopy. Lasers in Medical Science, 2021, 36, 303-309.	2.1	3
103	Label-Free Detection of the Architectural Feature of Blood Vessels in Glioblastoma Based on Multiphoton Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-7.	2.9	3
104	Nomogram model combining macro and micro tumor-associated collagen signatures obtained from multiphoton images to predict the histologic grade in breast cancer. Biomedical Optics Express, 2021, 12, 6558.	2.9	3
105	Spectral imaging technology of epithelial tissue based on two-photon excited fluorescence and second-harmonic generation. Frontiers of Optoelectronics in China, 2008, 1, 33-38.	0.2	2
106	Stromal optical properties: differentiating normal and cancerous stroma. Lasers in Medical Science, 2010, 25, 911-913.	2.1	2
107	Imaging the morphological change of tissue structure during the early phase of esophageal tumor progression using multiphoton microscopy. Proceedings of SPIE, 2012, , .	0.8	2
108	NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS. Journal of Innovative Optical Health Sciences, 2013, 06, 1350024.	1.0	2

#	Article	IF	Citations
109	Stromal alterations as quantitative optical biomarkers of epithelial tumor progression. Scanning, 2014, 36, 279-285.	1.5	2
110	A new method of assessing the surgical margin in rectal carcinomaâ€"using nonlinear optical microscopy. Laser Physics Letters, 2016, 13, 065602.	1.4	2
111	Labelâ€free identification of the microstructure of rat spinal cords based on nonlinear optical microscopy. Journal of Microscopy, 2017, 267, 143-149.	1.8	2
112	Secondâ€harmonic imaging microscopy for identifying colorectal intraepithelial neoplasia. Journal of Microscopy, 2018, 271, 31-35.	1.8	2
113	Rapid, label $\hat{\mathbf{a}} \in \mathbf{f}$ ree detection of intracranial germinoma using multiphoton microscopy. Neurophotonics, 2019, 6, 1.	3.3	2
114	Monitoring collagen changes in tumor microenvironment using multiphoton microscopy. , 2020, , .		2
115	Simultaneous observation of collagen and elastin based on the combined nonlinear optical imaging technique coupled with two-channel synchronized detection method. Optik, 2008, 119, 519-522.	2.9	1
116	A New Center Location Algorithm Used in Cell Segmentation. , 2008, , .		1
117	Multiphoton microscopic imaging of fibrotic focus in invasive ductal carcinoma of the breast. , 2014, , .		1
118	Differentiating the extent of cartilage repair in rabbit ears using nonlinear optical microscopy. Journal of Microscopy, 2015, 260, 219-226.	1.8	1
119	Multiphoton microscopic imaging of rabbit dorsal skin. Scanning, 2015, 37, 95-100.	1.5	1
120	Optical diagnosis of mammary ductal carcinoma using advanced optical technology. Proceedings of SPIE, 2015, , .	0.8	1
121	Two-photon excited fluorescence imaging of the pancreatic solid pseudopapillary tumor without hematoxylin and eosin stains. Scanning, 2016, 38, 245-250.	1.5	1
122	Label-free identification of the hippocampus and surrounding structures by multiphoton microscopy. Laser Physics Letters, 2016, 13, 055603.	1.4	1
123	Diagnosis of lichen sclerosus based on multiphoton microscopy. , 2018, , .		1
124	Multiphoton microscopy providing pathological-level quantification of myocardial fibrosis in transplanted human heart. Lasers in Medical Science, 2022, , 1.	2.1	1
125	Nonlinear optical microscopy of bronchus. , 2007, , .		0
126	Dynamic and geometric alignment of molecules induced by intense laser fields. Optik, 2008, 119, 777-782.	2.9	0

#	Article	IF	Citations
127	Multiphoton microscopy for monitoring collagen remodeling and sensing transplanted autologous fibroblasts metabolism. , 2009, , .		0
128	Investigation of collagen changes in sclerodermatous skin using second harmonic generation microscopy. , 2009, , .		0
129	An enabling tool for imaging of dermal repair after stem cell implantation: Nonlinear optical microscopy. , 2010, , .		0
130	Collagen alteration as quantitative optical biomarker of epithelial tumor progression. , 2010, , .		0
131	Nonlinear Spectral Imaging of Esophageal Tissue Based on Two-Photon Excited Fluorescence and Second-Harmonic Generation. , $2010, , .$		O
132	Determination of Tumor Stroma Scattering Coefficient Using Confocal Microscopy. , 2010, , .		0
133	Quantification of collagen alteration in mid-dermis of skin lesion with mucinosis using second harmonic generation imaging. , 2011 , , .		0
134	Identification of non-neoplastic and neoplastic gastric polyps using multiphoton microscopy. , 2012, , .		0
135	Nonlinear optical imaging characteristics of colonic adenocarcinoma using multiphoton microscopy. Proceedings of SPIE, 2012, , .	0.8	0
136	Multi-photon microscopic imaging of inflammatory fibroid polyps/Multi-Photonen-Mikroskopie entz $\tilde{A}^{1}\!\!/\!\!$ and ich fibroider Polypen. Photonics & Lasers in Medicine, 2013, 2, .	0.2	0
137	Imaging of surgical margin in pancreatic metastasis using two-photon excited fluorescence microscopy., 2014,,.		0
138	Identification of intramural metastasis in esophageal cancer using multiphoton microscopy. Proceedings of SPIE, 2017, , .	0.8	0
139	Intraoperative assisting diagnosis of esophageal submucosal cancer using multiphoton microscopy. Laser Physics Letters, 2018, 15, 075603.	1.4	0
140	A pilot study of using multiphoton microscopy to diagnose schwannoma. Journal Physics D: Applied Physics, 2019, 52, 415401.	2.8	0
141	Monitoring the progression of lobular breast carcinoma using multiphoton microscopy. Laser Physics Letters, 2019, 16, 105601.	1.4	0
142	Optical diagnosis of dermatofibrosarcoma protuberans differentiated from dermatofibroma using non-linear optical microscopy. Chinese Medical Journal, 2021, Publish Ahead of Print, .	2.3	0
143	Multiphoton microscopy for monitoring the occurrence, metastasis and therapy of breast cancer. Microwave and Optical Technology Letters, 2021, 63, 2470-2491.	1.4	0
144	Detection of Axillary Lymph Node Metastasis in Breast Cancer using Mulitiphoton Microscopy., 2017,,.		0

#	Article	IF	CITATIONS
145	Label-free multiphoton microscopy for ex vivo brain imaging: toward assisting pathologic diagnosis. , 2018, , .		0
146	Identification of macrophages in breast tumor microenvironment using label-free multiphoton microscopy. , 2019, , .		0
147	Multiphoton imaging of perineural invasion in breast cancer. , 2019, , .		0
148	Label-free multiphoton imaging to identify two types of tumor-infiltrating lymphocytes in breast tumor microenvironment. , 2020, , .		0
149	Collagen signature as a novel biomarker to predict axillary lymph node metastasis in breast cancer using multiphoton microscopy. Journal of Biophotonics, 2022, , e202100365.	2.3	0
150	Automatic and Label-Free Analysis of the Microstructure Feature Differences Between Normal Brain Tissue, Low-Grade, and High-Grade Gliomas Using the Combination of Multiphoton Microscopy and Image Analysis. Frontiers in Physics, 2022, 10 , .	2.1	0
151	Intratumor Graph Neural Network of Tumor-Associated Collagen Signatures from Multiphoton Microscopy Empowers Prognosis of 995 Breast Cancer Patients. , 2022, , .		0