Oleg V Shupliakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/168625/publications.pdf

Version: 2024-02-01

109 papers 9,473 citations

45 h-index 95 g-index

113 all docs

113
docs citations

113 times ranked

10113 citing authors

#	Article	IF	CITATIONS
1	A Pericyte Origin of Spinal Cord Scar Tissue. Science, 2011, 333, 238-242.	12.6	711
2	Spinal Cord Injury Reveals Multilineage Differentiation of Ependymal Cells. PLoS Biology, 2008, 6, e182.	5.6	558
3	Evidence for neurogenesis in the adult mammalian substantia nigra. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7925-7930.	7.1	539
4	Distinct pools of synaptic vesicles in neurotransmitter release. Nature, 1995, 375, 493-497.	27.8	492
5	Role of the Clathrin Terminal Domain in Regulating Coated Pit Dynamics Revealed by Small Molecule Inhibition. Cell, 2011, 146, 471-484.	28.9	459
6	Synaptic Vesicle Endocytosis Impaired by Disruption of Dynamin-SH3 Domain Interactions. Science, 1997, 276, 259-263.	12.6	455
7	Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nature Neuroscience, 2009, 12, 259-267.	14.8	415
8	Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9235-9239.	7.1	328
9	Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO Journal, 2011, 30, 2762-2778.	7.8	318
10	Endophilin/SH3p4 Is Required for the Transition from Early to Late Stages in Clathrin-Mediated Synaptic Vesicle Endocytosis. Neuron, 1999, 24, 143-154.	8.1	302
11	Two pools of vesicles associated with the presynaptic cytosolic projection in Drosophila neuromuscular junctions. Journal of Structural Biology, 2010, 172, 389-394.	2.8	297
12	Fission and Uncoating of Synaptic Clathrin-Coated Vesicles Are Perturbed by Disruption of Interactions with the SH3 Domain of Endophilin. Neuron, 2000, 27, 301-312.	8.1	276
13	Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Current Opinion in Neurobiology, 2000, 10, 312-320.	4.2	207
14	Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14476-14481.	7.1	207
15	Colocalization of synapsin and actin during synaptic vesicle recycling. Journal of Cell Biology, 2003, 161, 737-747.	5.2	193
16	Dissociation between Ca2+-Triggered Synaptic Vesicle Exocytosis and Clathrin-Mediated Endocytosis at a Central Synapse. Neuron, 1998, 21, 607-616.	8.1	155
17	Molecular basis for SH3 domain regulation of F-BAR–mediated membrane deformation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8213-8218.	7.1	138
18	Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nature Communications, 2016, 7, 12604.	12.8	127

#	Article	IF	Citations
19	Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. Journal of Cell Biology, 2007, 178, 309-322.	5.2	117
20	Locomotor Deficiencies and Aberrant Development of Subtype-Specific GABAergic Interneurons Caused by an Unliganded Thyroid Hormone Receptor $\hat{l}\pm 1$. Journal of Neuroscience, 2008, 28, 1904-1915.	3.6	112
21	An endophilin–dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling. Journal of Cell Science, 2011, 124, 133-143.	2.0	106
22	Control of lamprey locomotor neurons by colocalized monoamine transmitters. Nature, 1995, 374, 266-268.	27.8	103
23	Ultrastructural evidence for a preferential elimination of glutamate-immunoreactive synaptic terminals from spinal motoneurons after intramedullary axotomy. Journal of Comparative Neurology, 2000, 425, 10-23.	1.6	94
24	A latent lineage potential in resident neural stem cells enables spinal cord repair. Science, 2020, 370, .	12.6	89
25	Qualitative and quantitative analysis of glycine- and GABA-immunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: A postembedding electron microscopic study. , 1996, 365, 413-426.		88
26	How synapsin I may cluster synaptic vesicles. Seminars in Cell and Developmental Biology, 2011, 22, 393-399.	5.0	86
27	Immunohistochemical evidence for coexistence of glycine and GABA in nerve terminals on cat spinal motoneurones. NeuroReport, 1994, 5, 889-892.	1.2	85
28	Intersectin Is a Negative Regulator of Dynamin Recruitment to the Synaptic Endocytic Zone in the Central Synapse. Journal of Neuroscience, 2007, 27, 379-390.	3.6	81
29	The synapsin cycle: A view from the synaptic endocytic zone. Journal of Neuroscience Research, 2007, 85, 2648-2656.	2.9	77
30	Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4206-4211.	7.1	73
31	Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nature Neuroscience, 2015, 18, 826-835.	14.8	72
32	Measurement of the Dynamics of Exocytosis and Vesicle Retrieval at Cell Populations Using a Quartz Crystal Microbalance. Analytical Chemistry, 2001, 73, 5805-5811.	6.5	70
33	Amphiphysin is a Component of Clathrin Coats Formed During Synaptic Vesicle Recycling at the Lamprey Giant Synapse. Traffic, 2004, 5, 514-528.	2.7	65
34	Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells. Experimental Cell Research, 2006, 312, 2806-2815.	2.6	64
35	Vesicle Clustering in a Living Synapse Depends on a Synapsin Region that Mediates Phase Separation. Cell Reports, 2020, 30, 2594-2602.e3.	6.4	64
36	Pharmacologically induced elements of the hunting and feeding behavior in the pteropod mollusk Clione limacina. I. Effects of GABA. Journal of Neurophysiology, 1993, 69, 512-521.	1.8	63

#	Article	lF	CITATIONS
37	Immunocytochemical localization of amino acid neurotransmitter candidates in the ventral horn of the cat spinal cord: a light microscopic study. Experimental Brain Research, 1993, 96, 404-18.	1.5	62
38	Presynaptic mitochondria and the temporal pattern of neurotransmitter release. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 365-372.	4.0	62
39	Zinc co-localizes with GABA and glycine in synapses in the lamprey spinal cord. Journal of Comparative Neurology, 2001, 433, 208-221.	1.6	62
40	Perturbation of Syndapin/PACSIN Impairs Synaptic Vesicle Recycling Evoked by Intense Stimulation. Journal of Neuroscience, 2008, 28, 3925-3933.	3.6	60
41	Intersectin 1: a versatile actor in the synaptic vesicle cycle. Biochemical Society Transactions, 2010, 38, 181-186.	3.4	60
42	Cargo- and compartment-selective endocytic scaffold proteins. Biochemical Journal, 2004, 383, 1-11.	3.7	57
43	Synaptic and nonsynaptic monoaminergic neuron systems in the lamprey spinal cord. Journal of Comparative Neurology, 1996, 372, 229-244.	1.6	54
44	The synaptic vesicle cluster: A source of endocytic proteins during neurotransmitter release. Neuroscience, 2009, 158, 204-210.	2.3	51
45	Fast neurotransmitter release regulated by the endocytic scaffold intersectin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8266-8271.	7.1	51
46	Sustained Neurotransmitter Release: New Molecular Clues. European Journal of Neuroscience, 1997, 9, 2503-2511.	2.6	49
47	A procedure to deposit fiducial markers on vitreous cryo-sections for cellular tomography. Journal of Structural Biology, 2006, 156, 461-468.	2.8	49
48	Intersectin associates with synapsin and regulates its nanoscale localization and function. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12057-12062.	7.1	47
49	Ultrastructural organization of lamprey reticulospinal synapses in three dimensions. Journal of Comparative Neurology, 2002, 450, 167-182.	1.6	46
50	The novel conserved mitochondrial inner-membrane protein MTGM regulates mitochondrial morphology and cell proliferation. Journal of Cell Science, 2009, 122, 2252-2262.	2.0	44
51	Sphingosine 1-phosphate lyase ablation disrupts presynaptic architecture and function via an ubiquitin- proteasome mediated mechanism. Scientific Reports, 2016, 6, 37064.	3.3	43
52	Giant reticulospinal synapse in lamprey: molecular links between active and periactive zones. Cell and Tissue Research, 2006, 326, 301-310.	2.9	41
53	Vesicle Shrinking and Enlargement Play Opposing Roles in the Release of Exocytotic Contents. Cell Reports, 2020, 30, 421-431.e7.	6.4	41
54	Vesicle uncoating regulated by <scp>SH</scp> 3― <scp>SH</scp> 3 domainâ€mediated complex formation between endophilin and intersectin at synapses. EMBO Reports, 2015, 16, 232-239.	4.5	40

#	Article	IF	Citations
55	Functional diversity of central glutamate synapsesâ€pre―and postâ€synaptic mechanisms. Acta Physiologica Scandinavica, 1994, 150, 1-10.	2.2	39
56	Co-localized neuropeptide Y and GABA have complementary presynaptic effects on sensory synaptic transmission. European Journal of Neuroscience, 1998, 10, 2856-2870.	2.6	38
57	Synapsin I Senses Membrane Curvature by an Amphipathic Lipid Packing Sensor Motif. Journal of Neuroscience, 2011, 31, 18149-18154.	3.6	38
58	The reticulospinal glutamate synapse in lamprey: plasticity and presynaptic variability. Journal of Neurophysiology, 1994, 72, 592-604.	1.8	37
59	Synaptic Vesicle Depletion in Reticulospinal Axons is Reduced by 5-hydroxytryptamine: Direct Evidence for Presynaptic Modulation of Glutamatergic Transmission. European Journal of Neuroscience, 1995, 7, 1111-1116.	2.6	37
60	Argiopin blocks the glutamate responses and sensorimotor transmission in motoneurones of isolated frog spinal cord. Neuroscience Letters, 1987, 83, 179-184.	2.1	35
61	Membrane Charge Directs the Outcome of F-BAR Domain Lipid Binding and Autoregulation. Cell Reports, 2015, 13, 2597-2609.	6.4	35
62	Taking a Back Seat: Synaptic Vesicle Clustering in Presynaptic Terminals. Frontiers in Synaptic Neuroscience, 2010, 2, 143.	2.5	34
63	Role of epsin 1 in synaptic vesicle endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6445-6450.	7.1	33
64	A pre-embedding immunogold approach for detection of synaptic endocytic proteins in situ. Journal of Neuroscience Methods, 2004, 135, 169-174.	2.5	30
65	An Endocytic Scaffolding Protein together with Synapsin Regulates Synaptic Vesicle Clustering in the <i>Drosophila </i> Neuromuscular Junction. Journal of Neuroscience, 2015, 35, 14756-14770.	3.6	28
66	Centrifugal innervation of the lamprey retina. Light- and electron microscopic and electrophysiological investigations. Brain Research, 1989, 493, 51-65.	2.2	26
67	Two types of motoneurons supplying dorsal fin muscles in lamprey and their activity during fictive locomotion. Journal of Comparative Neurology, 1992, 321, 112-123.	1.6	26
68	Origin of phasic synaptic inhibition in myotomal motoneurons during fictive locomotion in the lamprey. Experimental Brain Research, 1993, 96, 194-202.	1.5	26
69	Possible morphological substrates for GABA-mediated presynaptic inhibition in the lamprey spinal cord. Journal of Comparative Neurology, 1993, 328, 463-472.	1.6	25
70	The dynamin-binding domains of Dap160/Intersectin affect bulk membrane retrieval in synapses. Journal of Cell Science, 2013, 126, 1021-31.	2.0	25
71	Recent insights into the building and cycling of synaptic vesicles. Experimental Cell Research, 2010, 316, 1344-1350.	2.6	24
72	Preformed \hat{l} ©-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells. Neuron, 2021, 109, 3119-3134.e5.	8.1	24

#	Article	IF	Citations
73	Targeted disruption of the Mast syndrome gene SPG21 in mice impairs hind limb function and alters axon branching in cultured cortical neurons. Neurogenetics, 2010, 11, 369-378.	1.4	23
74	Differential efficiency of the endocytic machinery in tonic and phasic synapses. Neuroscience, 2006, 141, 123-131.	2.3	22
75	Retromer in Synaptic Function and Pathology. Frontiers in Synaptic Neuroscience, 2018, 10, 37.	2.5	22
76	Anatomical study of spinobulbar neurons in lampreys. Journal of Comparative Neurology, 1998, 397, 475-492.	1.6	21
77	Synapsin- and Actin-Dependent Frequency Enhancement in Mouse Hippocampal Mossy Fiber Synapses. Cerebral Cortex, 2009, 19, 511-523.	2.9	20
78	Structural organization of the presynaptic density at identified synapses in the locust central nervous system. Journal of Comparative Neurology, 2012, 520, 384-400.	1.6	18
79	Monosynaptic input from cutaneous sensory afferents to fin motoneurons in lamprey., 1996, 369, 533-542.		17
80	Glial and neuronal glutamine pools at glutamatergic synapses with distinct properties. Neuroscience, 1997, 77, 1201-1212.	2.3	17
81	On the Distribution of GAP-43 and its Relation to Serotonin in Adult Monkey and Cat Spinal Cord and Lower Brainstem. European Journal of Neuroscience, 1992, 4, 777-784.	2.6	15
82	Thyrotropin-releasing hormone (TRH)-like immunoreactivity in the grey monkey (Macaca fascicularis) spinal cord and medulla oblongata with special emphasis on the bulbospinal tract. Journal of Comparative Neurology, 1992, 322, 293-310.	1.6	14
83	Inhibition of neurotransmitter release in the lamprey reticulospinal synapse by antibody-mediated disruption of SNAP-25 function. European Journal of Cell Biology, 1999, 78, 787-793.	3.6	14
84	Extrasynaptic localization of taurine-like immunoreactivity in the lamprey spinal cord. Journal of Comparative Neurology, 1994, 347, 301-311.	1.6	12
85	Immunologic differentiation of two high-affinity neurotensin receptor isoforms in the developing rat brain. Journal of Comparative Neurology, 2000, 425, 45-57.	1.6	12
86	A semi-correlative technique for the subcellular localization of proteins in Drosophila synapses. Journal of Neuroscience Methods, 2010, 185, 273-279.	2.5	10
87	Identification of two types of excitatory monosynaptic inputs in frog spinal motoneurones. Neuroscience Letters, 1990, 109, 82-87.	2.1	9
88	Role of the Clathrin Terminal Domain in Regulating Coated Pit Dynamics Revealed by Small Molecule Inhibition. Cell, 2011, 146, 841.	28.9	8
89	Mitochondrial dysfunction in adult midbrain dopamine neurons triggers an early immune response. PLoS Genetics, 2021, 17, e1009822.	3.5	8
90	\hat{l}_{\pm} -Synuclein in the Synaptic Vesicle Liquid Phase: Active Player or Passive Bystander?. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	8

#	Article	IF	CITATIONS
91	14 Central glutamatergic transmission. Advances in Second Messenger and Phosphoprotein Research, 1994, , 205-221.	4.5	7
92	Clathrin-mediated endocytosis cooperates with bulk endocytosis to generate vesicles. IScience, 2022, 25, 103809.	4.1	7
93	Ultrastructural identification of dividing cells in the adult mammalian central nervous system. Journal of Neuroscience Methods, 2002, 119, 59-63.	2.5	5
94	Recurrent dorsal root potentials and motoneuron morphology in the frog spinal cord. Neuroscience Letters, 1990, 117, 289-294.	2.1	4
95	Neurotransmitter Levels and Synaptic Strength at theDrosophilaLarval Neuromuscular Junction are not Altered by Mutation in theSluggish-aGene, Which Encodes Proline Oxidase and Affects Adult Locomotion. Journal of Neurogenetics, 2000, 14, 165-192.	1.4	4
96	Synaptic organization of dorsal root projections to lumbar motoneurons in the clawed toad (Xenopus laevis). Experimental Brain Research, 1986, 63, 135-42.	1.5	3
97	Presynaptic mechanisms in central synaptic transmission: glutamatergic synapse â€~biochemistryglutamatergic synapse ' of an intact glutamatergic synapse. Acta Physiologica Scandinavica, 1996, 157, 369-379.	2.2	3
98	Molecular Cloning of Synucleins in River Lamprey Lampetra fluviatilis. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 278-286.	0.6	1
99	Qualitative and quantitative analysis of glycine―and GABA―mmunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: A postembedding electron microscopic study. Journal of Comparative Neurology, 1996, 365, 413-426.	1.6	1
100	Co-localized neuropeptide Y and GABA have complementary presynaptic effects on sensory synaptic transmission. European Journal of Neuroscience, 1998, 10, 2856-2870.	2.6	1
101	Malfunctions in synaptic membrane trafficking in early pathology of Parkinson's disease: New molecular clues. Biological Communications, 2017, 62, 272-277.	0.8	1
102	Confocal laser scanning microscopy as a tool to study the 3-D structure of identified neurons. Micron and Microscopica Acta, 1992, 23, 129-130.	0.2	0
103	Vesicle Structural Changes Control Content Release of Transmitters and Hormones. Microscopy and Microanalysis, 2019, 25, 1172-1173.	0.4	0
104	P.406 Intrinsically disordered regions of synapsin hold together synaptic vesicles of the reserve pool in a living synapse. European Neuropsychopharmacology, 2019, 29, S287-S288.	0.7	0
105	Vesicle Shrinking and Enlargement: The Yin and Yang of Exocytotic Content Release. Biophysical Journal, 2020, 118, 399a.	0.5	0
106	Synaptic Endosomes. , 2006, , 36-49.		0
107	P.0285 Regulation of the synaptic vesicle liquid phase by dynamic sh3 domain binding. European Neuropsychopharmacology, 2021, 53, S205.	0.7	0
108	P.0270 Early structural alterations in mitochondria in adult dopamine neurons induced by conditional ablation of MFN2. European Neuropsychopharmacology, 2021, 53, S195.	0.7	0

#	Article	IF	CITATIONS
109	P.0557 A role of endophilin A in the synaptic vesicle liquid phase. European Neuropsychopharmacology, 2021, 53, S409-S410.	0.7	O