Srinivas Bikkina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1686127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atmospheric pathways of phosphorous to the Bay of Bengal: contribution from anthropogenic sources and mineral dust. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 17174.	1.6	25
2	Stable carbon and nitrogen isotopic composition of fine mode aerosols (PM _{2.5}) over the Bay of Bengal: impact of continental sources. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 31518.	1.6	42
3	Anthropogenic fine aerosols dominate the wintertime regime over the northern Indian Ocean. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1464871.	1.6	19
4	Regional heterogeneities in the emission of airborne primary sugar compounds and biogenic secondary organic aerosols in the East Asian outflow: evidence for coal combustion as a source of levoglucosan. Atmospheric Chemistry and Physics, 2022, 22, 1373-1393.	4.9	11
5	Carbonaceous aerosols and their light absorption properties over the Bay of Bengal during continental outflow. Environmental Sciences: Processes and Impacts, 2022, 24, 72-88.	3.5	2
6	Unraveling the sources of atmospheric organic aerosols over the Arabian Sea: Insights from the stable carbon and nitrogen isotopic composition. Science of the Total Environment, 2022, 827, 154260.	8.0	7
7	Dry-deposition of inorganic and organic nitrogen aerosols to the Arabian Sea: Sources, transport and biogeochemical significance in surface waters. Marine Chemistry, 2021, 231, 103938.	2.3	13
8	Low molecular weight dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls as ozonolysis products of isoprene: Implication for the gaseous-phase formation of secondary organic aerosols. Science of the Total Environment, 2021, 769, 144472.	8.0	22
9	Hydroxy Fatty Acids in Rainwater and Aerosols from Suburban Tokyo in Central Japan: The Impact of Long-Range Transport of Soil Microbes and Plant Waxes. ACS Earth and Space Chemistry, 2021, 5, 257-267.	2.7	4
10	Decadal Variations in Hydroxy Fatty Acids Over Chichijima Island in the North Pacific: Longâ€Term Seasonal Variability in Plant and Microbial Markers. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033347.	3.3	1
11	Enhanced Lightâ€Absorption of Black Carbon in Rainwater Compared With Aerosols Over the Northern Indian Ocean. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031246.	3.3	8
12	Evidence for brown carbon absorption over the Bay of Bengal during the southwest monsoon season: a possible oceanic source. Environmental Sciences: Processes and Impacts, 2020, 22, 1743-1758.	3.5	9
13	Chemical characterization of wintertime aerosols over the Arabian Sea: Impact of marine sources and long-range transport. Atmospheric Environment, 2020, 239, 117749.	4.1	21
14	Source Quantification of South Asian Black Carbon Aerosols with Isotopes and Modeling. Environmental Science & Technology, 2020, 54, 11771-11779.	10.0	34
15	¹³ C Probing of Ambient Photo-Fenton Reactions Involving Iron and Oxalic Acid: Implications for Oceanic Biogeochemistry. ACS Earth and Space Chemistry, 2020, 4, 964-976.	2.7	6
16	Source forensics of n-alkanes and n-fatty acids in urban aerosols using compound specific radiocarbon/stable carbon isotopic composition. Environmental Research Letters, 2020, 15, 074007.	5.2	12
17	Tracing the Relative Significance of Primary versus Secondary Organic Aerosols from Biomass Burning Plumes over Coastal Ocean Using Sugar Compounds and Stable Carbon Isotopes. ACS Earth and Space Chemistry, 2019, 3, 1471-1484.	2.7	19
18	Photochemical degradation affects the light absorption of water-soluble brown carbon in the South Asian outflow, Science Advances, 2019, 5, eaau8066,	10.3	123

SRINIVAS BIKKINA

#	Article	IF	CITATIONS
19	Hydroxy Fatty Acids in Remote Marine Aerosols over the Pacific Ocean: Impact of Biological Activity and Wind Speed. ACS Earth and Space Chemistry, 2019, 3, 366-379.	2.7	24
20	Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances, 2019, 5, eaau7671.	10.3	128
21	Brown carbon in the continental outflow to the North Indian Ocean. Environmental Sciences: Processes and Impacts, 2019, 21, 970-987.	3.5	33
22	Anthropogenic nitrogen inputs and impacts on oceanic N2O fluxes in the northern Indian Ocean: The need for an integrated observation and modelling approach. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 166, 104-113.	1.4	9
23	Air quality in megacity Delhi affected by countryside biomass burning. Nature Sustainability, 2019, 2, 200-205.	23.7	148
24	Sources and Radiative Absorption of Waterâ€Soluble Brown Carbon in the High Arctic Atmosphere. Geophysical Research Letters, 2019, 46, 14881-14891.	4.0	17
25	Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study. Biogeosciences, 2018, 15, 6659-6684.	3.3	63
26	Evidence for enhanced chlorophyll-a levels in the Bay of Bengal during early north-east monsoon. Journal of Oceanography and Marine Science, 2018, 9, 15-23.	0.8	13
27	Carbon isotopeâ€constrained seasonality of carbonaceous aerosol sources from an urban location (Kanpur) in the Indoâ€Gangetic Plain. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4903-4923.	3.3	42
28	Tracing atmospheric transport of soil microorganisms and higher plant waxes in the East Asian outflow to the North Pacific Rim by using hydroxy fatty acids: Yearâ€round observations at Gosan, Jeju Island. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4112-4131.	3.3	10
29	Secondary Organic Aerosol Formation over Coastal Ocean: Inferences from Atmospheric Water-Soluble Low Molecular Weight Organic Compounds. Environmental Science & Technology, 2017, 51, 4347-4357.	10.0	52
30	Homologous series of low molecular weight (C1-C10) monocarboxylic acids, benzoic acid and hydroxyacids in fine-mode (PM2.5) aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways. Atmospheric Environment, 2017, 167, 170-180.	4.1	20
31	Impact of biomass burning on soil microorganisms and plant metabolites: A view from molecular distributions of atmospheric hydroxy fatty acids over Mount Tai. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2684-2699.	3.0	14
32	Hydroxy fatty acids in snow pit samples from Mount Tateyama in central Japan: Implications for atmospheric transport of microorganisms and plant waxes associated with Asian dust. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,641.	3.3	15
33	Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4797-4809.	3.3	26
34	A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmospheric Research, 2016, 170, 140-160.	4.1	282
35	Hygroscopic growth of particles nebulized from water-soluble extracts of PM2.5 aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways. Science of the Total Environment, 2016, 544, 661-669.	8.0	21
36	Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain. Atmospheric Environment, 2016, 125, 360-370.	4.1	119

SRINIVAS BIKKINA

#	Article	IF	CITATIONS
37	Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and <i>α</i> â€dicarbonyls over the western North Pacific: Sources and formation pathways. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5010-5035.	3.3	35
38	Seasonal and longitudinal distributions of atmospheric waterâ€soluble dicarboxylic acids, oxocarboxylic acids, and î± â€dicarbonyls over the North Pacific. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5191-5213.	3.3	16
39	Atmospheric 210 Pb and anthropogenic trace metals in the continental outflow to the Bay of Bengal. Atmospheric Environment, 2015, 122, 737-747.	4.1	8
40	Atmospheric outflow of nutrients to the Bay of Bengal: Impact of anthropogenic sources. Journal of Marine Systems, 2015, 141, 34-44.	2.1	12
41	Atmospheric transport of mineral dust from the <scp>I</scp> ndoâ€ <scp>G</scp> angetic <scp>P</scp> lain: Temporal variability, acid processing, and iron solubility. Geochemistry, Geophysics, Geosystems, 2014, 15, 3226-3243.	2.5	26
42	High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene. Geophysical Research Letters, 2014, 41, 3649-3657.	4.0	75
43	PM2.5, EC and OC in atmospheric outflow from the Indo-Gangetic Plain: Temporal variability and aerosol organic carbon-to-organic mass conversion factor. Science of the Total Environment, 2014, 487, 196-205.	8.0	117
44	Brown carbon in atmospheric outflow from the Indo-Gangetic Plain: Mass absorption efficiency and temporal variability. Atmospheric Environment, 2014, 89, 835-843.	4.1	116
45	Atmospheric deposition of N, P and Fe to the Northern Indian Ocean: Implications to C- and N-fixation. Science of the Total Environment, 2013, 456-457, 104-114.	8.0	61
46	Atmospheric dry-deposition of mineral dust and anthropogenic trace metals to the Bay of Bengal. Journal of Marine Systems, 2013, 126, 56-68.	2.1	63
47	Light absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: impact of biomass burning emissions. Environmental Research Letters, 2013, 8, 044042.	5.2	99
48	Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea. Biogeochemistry, 2012, 110, 257-268.	3.5	57
49	Atmospheric dry deposition of inorganic and organic nitrogen to the Bay of Bengal: Impact of continental outflow. Marine Chemistry, 2011, 127, 170-179.	2.3	65
50	Anthropogenic sulphate aerosols and large Cl-deficit in marine atmospheric boundary layer of tropical Bay of Bengal. Journal of Atmospheric Chemistry, 2010, 66, 1-10.	3.2	37
51	Aerosol iron solubility over Bay of Bengal: Role of anthropogenic sources and chemical processing. Marine Chemistry, 2010, 121, 167-175.	2.3	110
52	Unraveling the Sources of Atmospheric Organic Aerosols Over the Arabian Sea: Insights from the Stable Carbon and Nitrogen Isotopic Composition. SSRN Electronic Journal, 0, , .	0.4	0