Susana Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1686102/publications.pdf

Version: 2024-02-01

44 papers 2,378 citations

257101 24 h-index 264894 42 g-index

44 all docs

44 docs citations

44 times ranked 2562 citing authors

#	Article	IF	CITATIONS
1	Interaction of Different Polyphenols with Bovine Serum Albumin (BSA) and Human Salivary î±-Amylase (HSA) by Fluorescence Quenching. Journal of Agricultural and Food Chemistry, 2007, 55, 6726-6735.	2.4	451
2	Different Phenolic Compounds Activate Distinct Human Bitter Taste Receptors. Journal of Agricultural and Food Chemistry, 2013, 61, 1525-1533.	2.4	197
3	Wine Flavonoids in Health and Disease Prevention. Molecules, 2017, 22, 292.	1.7	167
4	Sensorial properties of red wine polyphenols: Astringency and bitterness. Critical Reviews in Food Science and Nutrition, 2017, 57, 937-948.	5.4	134
5	Reactivity of Human Salivary Proteins Families Toward Food Polyphenols. Journal of Agricultural and Food Chemistry, 2011, 59, 5535-5547.	2.4	128
6	Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules, 2020, 25, 2590.	1.7	112
7	Carbohydrates Inhibit Salivary Proteins Precipitation by Condensed Tannins. Journal of Agricultural and Food Chemistry, 2012, 60, 3966-3972.	2.4	98
8	Mechanistic Approach by Which Polysaccharides Inhibit \hat{l}_{\pm} -Amylase/Procyanidin Aggregation. Journal of Agricultural and Food Chemistry, 2009, 57, 4352-4358.	2.4	89
9	The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydrate Polymers, 2017, 177, 77-85.	5.1	77
10	Inhibition of Trypsin by Condensed Tannins and Wine. Journal of Agricultural and Food Chemistry, 2007, 55, 7596-7601.	2.4	72
11	Influence of Anthocyanins, Derivative Pigments and Other Catechol and Pyrogallol-Type Phenolics on Breast Cancer Cell Proliferation. Journal of Agricultural and Food Chemistry, 2010, 58, 3785-3792.	2.4	68
12	Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols. Journal of Agricultural and Food Chemistry, 2018, 66, 8814-8823.	2.4	65
13	New Anthocyanin–Human Salivary Protein Complexes. Langmuir, 2015, 31, 8392-8401.	1.6	64
14	Interaction of different classes of salivary proteins with food tannins. Food Research International, 2012, 49, 807-813.	2.9	62
15	Study of human salivary proline-rich proteins interaction with food tannins. Food Chemistry, 2018, 243, 175-185.	4.2	43
16	First evidences of interaction between pyranoanthocyanins and salivary proline-rich proteins. Food Chemistry, 2017, 228, 574-581.	4.2	41
17	Bioactive Peptides and Dietary Polyphenols: Two Sides of the Same Coin. Molecules, 2020, 25, 3443.	1.7	40
18	Effect of Condensed Tannins Addition on the Astringency of Red Wines. Chemical Senses, 2012, 37, 191-198.	1.1	39

#	Article	IF	Citations
19	In Vivo Interactions between Procyanidins and Human Saliva Proteins: Effect of Repeated Exposures to Procyanidins Solution. Journal of Agricultural and Food Chemistry, 2014, 62, 9562-9568.	2.4	39
20	Molecular study of mucin-procyanidin interaction by fluorescence quenching and Saturation Transfer Difference (STD)-NMR. Food Chemistry, 2017, 228, 427-434.	4.2	37
21	Molecular Interaction Between Salivary Proteins and Food Tannins. Journal of Agricultural and Food Chemistry, 2017, 65, 6415-6424.	2.4	36
22	Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes. Journal of Agricultural and Food Chemistry, 2016, 64, 7823-7828.	2.4	31
23	Human saliva protein profile: Influence of food ingestion. Food Research International, 2014, 64, 508-513.	2.9	30
24	Effect of malvidin-3-glucoside and epicatechin interaction on their ability to interact with salivary proline-rich proteins. Food Chemistry, 2019, 276, 33-42.	4.2	26
25	The effect of pectic polysaccharides from grape skins on salivary protein – procyanidin interactions. Carbohydrate Polymers, 2020, 236, 116044.	5.1	25
26	Interaction between Ellagitannins and Salivary Proline-Rich Proteins. Journal of Agricultural and Food Chemistry, 2019, 67, 9579-9590.	2.4	24
27	Interaction of polyphenols with model membranes: Putative implications to mouthfeel perception. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183133.	1.4	22
28	Inhibition Mechanisms of Wine Polysaccharides on Salivary Protein Precipitation. Journal of Agricultural and Food Chemistry, 2020, 68, 2955-2963.	2.4	21
29	Interaction between red wine procyanidins and salivary proteins: effect of stomach digestion on the resulting complexes. RSC Advances, 2015, 5, 12664-12670.	1.7	20
30	Oral interactions between a green tea flavanol extract and red wine anthocyanin extract using a new cell-based model: insights on the effect of different oral epithelia. Scientific Reports, 2020, 10, 12638.	1.6	20
31	Synergistic effect of mixture of two proline-rich-protein salivary families (aPRP and bPRP) on the interaction with wine flavanols. Food Chemistry, 2019, 272, 210-215.	4.2	18
32	Development of a New Cell-Based Oral Model To Study the Interaction of Oral Constituents with Food Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 12833-12843.	2.4	17
33	Identification of all FK506-binding proteins from Neurospora crassa. Fungal Genetics and Biology, 2008, 45, 1600-1607.	0.9	11
34	Effect of oxidation on color parameters, tannins, and sensory characteristics of Sangiovese wines. European Food Research and Technology, 2021, 247, 2977-2991.	1.6	10
35	New insights into the oral interactions of different families of phenolic compounds: Deepening the astringency mouthfeels. Food Chemistry, 2022, 375, 131642.	4.2	10
36	Polyphenolic Characterization of Nebbiolo Red Wines and Their Interaction with Salivary Proteins. Foods, 2020, 9, 1867.	1.9	8

#	Article	IF	CITATIONS
37	Interaction of a Procyanidin Mixture with Human Saliva and the Variations of Salivary Protein Profiles over a 1-Year Period. Journal of Agricultural and Food Chemistry, 2020, 68, 13824-13832.	2.4	7
38	Interactions between polyphenol oxidation products and salivary proteins: Specific affinity of CQA dehydrodimers with cystatins and P-B peptide. Food Chemistry, 2021, 343, 128496.	4.2	5
39	Understanding the molecular interactions between a yeast protein extract and phenolic compounds. Food Research International, 2021, 143, 110261.	2.9	5
40	Oenological perspective of red wine astringency. Oeno One, 2017, 51, .	0.7	3
41	Wine. , 2017, , 593-621.		2
42	Interaction between salivary proteins and cork phenolic compounds able to migrate to wine model solutions. Food Chemistry, 2022, 367, 130607.	4.2	2
43	Polyphenol Interactions and Food Organoleptic Properties. , 2019, , 650-655.		1
44	Wine astringent compounds monitored by an electrochemical biosensor. Food Chemistry, 2022, 395, 133587.	4.2	1