Sarah E Diamond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1686015/publications.pdf

Version: 2024-02-01

53 papers 3,282 citations

30 h-index 197535 49 g-index

76 all docs 76 docs citations 76 times ranked 4017 citing authors

#	Article	IF	Citations
1	Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Functional Ecology, 2013, 27, 1415-1423.	1.7	325
2	Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evolutionary Ecology, 2012, 26, 1101-1118.	0.5	234
3	The spatial patterns of directional phenotypic selection. Ecology Letters, 2013, 16, 1382-1392.	3.0	183
4	Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biology, 2012, 18, 448-456.	4.2	179
5	A roadmap for urban evolutionary ecology. Evolutionary Applications, 2019, 12, 384-398.	1.5	161
6	Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biological Journal of the Linnean Society, 2017, 121, 248-257.	0.7	146
7	Species' traits predict phenological responses to climate change in butterflies. Ecology, 2011, 92, 1005-1012.	1.5	137
8	Environmental Dependence of Thermal Reaction Norms: Host Plant Quality Can Reverse the Temperatureâ€Size Rule. American Naturalist, 2010, 175, 1-10.	1.0	128
9	Mechanistic species distribution modelling as a link between physiology and conservation. , 2015, 3, cov056.		117
10	A physiological traitâ€based approach to predicting the responses of species to experimental climate warming. Ecology, 2012, 93, 2305-2312.	1.5	113
11	Socioâ€ecoâ€evolutionary dynamics in cities. Evolutionary Applications, 2021, 14, 248-267.	1.5	86
12	Adaptive Evolution in Cities: Progress and Misconceptions. Trends in Ecology and Evolution, 2021, 36, 239-257.	4.2	85
13	Do growing degree days predict phenology across butterfly species?. Ecology, 2015, 96, 1473-1479.	1.5	81
14	Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180036.	1.2	76
15	Foraging by forest ants under experimental climatic warming: a test at two sites. Ecology and Evolution, 2013, 3, 482-491.	0.8	73
16	Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology, 2014, 95, 2613-2621.	1.5	65
17	Contemporary climateâ€driven range shifts: Putting evolution back on the table. Functional Ecology, 2018, 32, 1652-1665.	1.7	62
18	Beyond thermal limits: comprehensive metrics of performance identify key axes of thermal adaptation in ants. Functional Ecology, 2017, 31, 1091-1100.	1.7	59

#	Article	IF	Citations
19	Host plant quality, selection history and trade-offs shape the immune responses of <i>Manduca sexta </i> . Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 289-297.	1.2	55
20	Climatic warming destabilizes forest ant communities. Science Advances, 2016, 2, e1600842.	4.7	53
21	The interplay between plasticity and evolution in response to human-induced environmental change. F1000Research, 2016, 5, 2835.	0.8	52
22	Species' traits predict phenological responses to climate change in butterflies. Ecology, 2011, 92, 1005-1012.	1.5	50
23	Governing for Transformative Change across the Biodiversity–Climate–Society Nexus. BioScience, 2022, 72, 684-704.	2.2	48
24	Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change. Annals of the New York Academy of Sciences, 2017, 1389, 5-19.	1.8	46
25	Urban heat islands advance the timing of reproduction in a social insect. Journal of Thermal Biology, 2019, 80, 119-125.	1.1	45
26	Fitness consequences of host plant choice: a field experiment. Oikos, 2010, 119, 542-550.	1.2	43
27	Direct and indirect phenotypic selection on developmental trajectories in Manduca sexta. Functional Ecology, 2012, 26, 598-607.	1.7	37
28	Using Physiology to Predict the Responses of Ants to Climatic Warming. Integrative and Comparative Biology, 2013, 53, 965-974.	0.9	35
29	Heat tolerance predicts the importance of species interaction effects as the climate changes. Integrative and Comparative Biology, 2017, 57, 112-120.	0.9	35
30	Evolution of plasticity in the city: urban acorn ants can better tolerate more rapid increases in environmental temperature., 2018, 6, coy030.		35
31	Evolution, not transgenerational plasticity, explains the adaptive divergence of acorn ant thermal tolerance across an urban–rural temperature cline. Evolutionary Applications, 2019, 12, 1678-1687.	1.5	35
32	Evolution in Cities. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 519-540.	3.8	35
33	Shared and unique responses of insects to the interaction of urbanization and background climate. Current Opinion in Insect Science, 2015, 11 , 71 - 77 .	2.2	34
34	The Janus of macrophysiology: stronger effects of evolutionary history, but weaker effects of climate on upper thermal limits are reversed for lower thermal limits in ants. Environmental Epigenetics, 2018, 64, 223-230.	0.9	34
35	In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness tradeâ€offs in response to urban evolution in an acornâ€dwelling ant. Evolution; International Journal of Organic Evolution, 2021, 75, 876-887.	1.1	28
36	Evolutionary divergence of field and laboratory populations of <i>Manduca sexta</i> in response to hostâ€plant quality. Ecological Entomology, 2010, 35, 166-174.	1.1	22

#	Article	IF	Citations
37	Thermal regime drives a latitudinal gradient in morphology and life history in a livebearing fish. Biological Journal of the Linnean Society, 2018, 125, 126-141.	0.7	21
38	Evolution is a doubleâ€edged sword, not a silver bullet, to confront global change. Annals of the New York Academy of Sciences, 2020, 1469, 38-51.	1.8	21
39	Conservation implications of divergent global patterns of ant and vertebrate diversity. Diversity and Distributions, 2013, 19, 1084-1092.	1.9	20
40	Thermal specialist ant species have restricted, equatorial geographic ranges: implications for climate change vulnerability and risk of extinction. Ecography, 2018, 41, 1507-1509.	2.1	20
41	The Evolutionary Ecology of Mutualisms in Urban Landscapes. , 2020, , 111-129.		20
42	Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. Journal of Experimental Biology, 2021, 224, .	0.8	19
43	Host plant adaptation and the evolution of thermal reaction norms. Oecologia, 2012, 169, 353-360.	0.9	18
44	Evidence for the evolution of thermal tolerance, but not desiccation tolerance, in response to hotter, drier city conditions in a cosmopolitan, terrestrial isopod. Evolutionary Applications, 2021, 14, 12-23.	1.5	16
45	Pedal to the metal: Cities power evolutionary divergence by accelerating metabolic rate and locomotor performance. Evolutionary Applications, 2021, 14, 36-52.	1.5	14
46	The role of tolerance variation in vulnerability forecasting of insects. Current Opinion in Insect Science, 2018, 29, 85-92.	2.2	13
47	Experimental winter warming modifies thermal performance and primes acorn ants for warm weather. Journal of Insect Physiology, 2017, 100, 77-81.	0.9	12
48	Abundance of spring―and winterâ€active arthropods declines with warming. Ecosphere, 2021, 12, e03473.	1.0	12
49	Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands. Journal of Thermal Biology, 2019, 85, 102426.	1.1	11
50	Idiosyncrasies in cities: evaluating patterns and drivers of ant biodiversity along urbanization gradients. Journal of Urban Ecology, 2019, 5, .	0.6	11
51	Adaptation to urban environments. Current Opinion in Insect Science, 2022, 51, 100893.	2.2	10
52	Nutrition as a facilitator of hostâ€race formation: the shift of a stemâ€boring beetle to a gall host. Ecological Entomology, 2010, 35, 396-406.	1.1	7
53	Adaptation to urban heat islands enhances thermal performance following development under chronic thermal stress, but not benign conditions in the terrestrial isopod Oniscus asellus. Physiological and Biochemical Zoology, 0, , .	0.6	3