
Petr PetÅÃ^M k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1685963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18561-18565.	3.3	523
2	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397
3	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	6.0	385
4	Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Journal of Ecology, 2012, 100, 352-365.	1.9	214
5	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	1.1	185
6	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	3.9	177
7	Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology, 2015, 21, 3726-3737.	4.2	124
8	Vegetation succession in restoration of disturbed sites in Central Europe: the direction of succession and species richness across 19 seres. Applied Vegetation Science, 2014, 17, 193-200.	0.9	123
9	Global environmental change effects on plant community composition trajectories depend upon management legacies. Global Change Biology, 2018, 24, 1722-1740.	4.2	93
10	Combining Biodiversity Resurveys across Regions to Advance Global Change Research. BioScience, 2017, 67, 73-83.	2.2	89
11	Pladias Database of the Czech flora and vegetation. Preslia, 2021, 93, 1-87.	1.1	86
12	Poleward migration of the destructive effects of tropical cyclones during the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11543-11548.	3.3	71
13	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	3.4	67
14	Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 2018, 29, 812-823.	1.1	51
15	Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environmental Pollution, 2018, 242, 1787-1799.	3.7	49
16	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	2.7	49
17	Life stage, not climate change, explains observed tree range shifts. Global Change Biology, 2016, 22, 1904-1914.	4.2	46
18	Plant distribution data for the Czech Republic integrated in the Pladias database. Preslia, 2019, 91, 1-24.	1.1	42

Petr PetÅ™Ãĸ

#	Article	IF	CITATIONS
19	Robinia pseudoacacia-dominated vegetation types of Southern Europe: Species composition, history, distribution and management. Science of the Total Environment, 2020, 707, 134857.	3.9	41
20	Using long-term ecosystem service and biodiversity data to study the impacts and adaptation options in response to climate change: insights from the global ILTER sites network. Current Opinion in Environmental Sustainability, 2013, 5, 53-66.	3.1	39
21	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	3.0	39
22	Vegetation Succession on River Sediments along the Nakdong River, South Korea. Folia Geobotanica, 2014, 49, 507-519.	0.4	33
23	Botanical survey and screening of plant species which accumulate 226Ra from contaminated soil of uranium waste depot. European Journal of Soil Biology, 2007, 43, 251-261.	1.4	32
24	Recording effort biases the species richness cited in plant distribution atlases. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 57-65.	1.1	29
25	Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils. New Phytologist, 2014, 202, 431-441.	3.5	29
26	Plant Diversity Changes during the Postglacial in East Asia: Insights from Forest Refugia on Halla Volcano, Jeju Island. PLoS ONE, 2012, 7, e33065.	1.1	29
27	Long-term patterns in soil acidification due to pollution in forests of the Eastern Sudetes Mountains. Environmental Pollution, 2011, 159, 2586-2593.	3.7	26
28	Environmental correlates of plant diversity in Korean temperate forests. Acta Oecologica, 2013, 47, 37-45.	0.5	26
29	Classification of <scp>K</scp> orean forests: patterns along geographic and environmental gradients. Applied Vegetation Science, 2015, 18, 5-22.	0.9	26
30	Impact of invasive and native dominants on species richness and diversity of plant communities. Preslia, 2021, 93, 181-201.	1.1	26
31	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	2.7	21
32	226Ra uptake from soils into different plant species. Journal of Radioanalytical and Nuclear Chemistry, 2004, 262, 187-189.	0.7	19
33	A modelâ€based approach to studying changes in compositional heterogeneity. Methods in Ecology and Evolution, 2014, 5, 156-164.	2.2	19
34	Tree growth response to recent warming of two endemic species in Northeast Asia. Climatic Change, 2020, 162, 1345-1364.	1.7	18
35	Two faces of parks. Preslia, 2020, 92, 353-373.	1.1	14
36	Historical charcoal burning and coppicing suppressed beech and increased forest vegetation heterogeneity. Journal of Vegetation Science, 2021, 32, .	1.1	13

Ретг РетÅ™Ãк

#	Article	IF	CITATIONS
37	Species groups can be transferred across different scales. Journal of Biogeography, 2006, 33, 1628-1642.	1.4	11
38	Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes. Basic and Applied Ecology, 2018, 30, 52-64.	1.2	11
39	Habitat requirements of Cardaminopsis petraea — Rare and relict species of the Czech Republic. Biologia (Poland), 2006, 61, 51-61.	0.8	10
40	Distributions of vascular plants in the Czech Republic. Part 7. Preslia, 2018, 90, 425-531.	1.1	10
41	It is time to change land use and landscape management in the czech republic. Ecosystem Health and Sustainability, 2015, 1, 1-6.	1.5	8
42	Composition patterns of ornamental flora in the Czech Republic. NeoBiota, 0, 52, 87-109.	1.0	8
43	Vegetation with <i>Gagea bohemica</i> in the landscape context. Plant Biosystems, 2011, 145, 570-583.	0.8	6
44	Forests and Climate Change in Czechia: an Appeal to Responsibility. Journal of Landscape Ecology(Czech Republic), 2018, 11, 3-16.	0.2	5
45	Reply to Harwood et al.: Thermophilization estimation is robust to the scale of species distribution data. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1166-E1166.	3.3	4
46	Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 2021, 109, 3944-3957.	1.9	4
47	Response to Comment on "Forest microclimate dynamics drive plant responses to warmingâ€. Science, 2020, 370, .	6.0	3
48	Vegetation with Aira praecox in the Czech Republic compared to its variability in Western Europe. Phytocoenologia, 2007, 37, 115-134.	1.2	2
49	Flora of toxic depots in selected industrial zones. Acta Societatis Botanicorum Poloniae, 2011, 78, 327-334.	0.8	2
50	Korean Forest Database. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 300-301.	0.2	2
51	Combining numerical and traditional approaches to classify Echinops sphaerocephalus invaded communities in the Czech Republic. Phytocoenologia, 2009, 39, 253-264.	1.2	1
52	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	1
53	Tropical Cyclone Disturbances Induce Contrasting Impacts on Forest Structure, Plant Composition, and Soil Properties in Temperate Broadleaf and Coniferous Forests. Forests, 2022, 13, 1033.	0.9	1
54	Editorial to The Monothematic Issue of Jle: Forests and Climate Change – How to Take Responsibility?. Journal of Landscape Ecology(Czech Republic), 2018, 11, 1-2.	0.2	0