Luiz G Greca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1685700/publications.pdf

Version: 2024-02-01

516710 713466 21 884 16 21 h-index citations g-index papers 22 22 22 1152 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Benchmarking supramolecular adhesive behavior of nanocelluloses, cellulose derivatives and proteins. Carbohydrate Polymers, 2022, 292, 119681.	10.2	10
2	Infiltration of Proteins in Cholesteric Cellulose Structures. Biomacromolecules, 2021, 22, 2067-2080.	5.4	19
3	Chitin–amyloid synergism and their use as sustainable structural adhesives. Journal of Materials Chemistry A, 2021, 9, 19741-19753.	10.3	11
4	Multifunctional lignin-based nanocomposites and nanohybrids. Green Chemistry, 2021, 23, 6698-6760.	9.0	93
5	Lignin-First Integrated Hydrothermal Treatment (HTT) and Synthesis of Low-Cost Biorefinery Particles. ACS Sustainable Chemistry and Engineering, 2020, 8, 1230-1239.	6.7	37
6	Guiding Bacterial Activity for Biofabrication of Complex Materials <i>via</i> Controlled Wetting of Superhydrophobic Surfaces. ACS Nano, 2020, 14, 12929-12937.	14.6	23
7	Morphological and Wettability Properties of Thin Coating Films Produced from Technical Lignins. Langmuir, 2020, 36, 9675-9684.	3.5	32
8	Nanofibrillar networks enable universal assembly of superstructured particle constructs. Science Advances, 2020, 6, eaaz7328.	10.3	44
9	Exploiting Supramolecular Interactions from Polymeric Colloids for Strong Anisotropic Adhesion between Solid Surfaces. Advanced Materials, 2020, 32, e1906886.	21.0	64
10	Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir, 2019, 35, 571-588.	3.5	120
11	Morphology-Controlled Synthesis of Colloidal Polyphenol Particles from Aqueous Solutions of Tannic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 16985-16990.	6.7	18
12	Biomimetic Templating: Tessellation of Chiralâ€Nematic Cellulose Nanocrystal Films by Microtemplating (Adv. Funct. Mater. 25/2019). Advanced Functional Materials, 2019, 29, 1970169.	14.9	1
13	Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 10257-10265.	6.7	18
14	Tessellation of Chiralâ€Nematic Cellulose Nanocrystal Films by Microtemplating. Advanced Functional Materials, 2019, 29, 1808518.	14.9	37
15	Effects of non-solvents and electrolytes on the formation and properties of cellulose I filaments. Scientific Reports, 2019, 9, 16691.	3.3	27
16	Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Materials Horizons, 2018, 5, 408-415.	12.2	81
17	Particulate Coatings via Evaporation-Induced Self-Assembly of Polydisperse Colloidal Lignin on Solid Interfaces. Langmuir, 2018, 34, 5759-5771.	3.5	44
18	Biobased aerogels with different surface charge as electrolyte carrierÂmembranes in quantum dot-sensitized solar cell. Cellulose, 2018, 25, 3363-3375.	4.9	17

#	Article	IF	CITATION
19	Techno-Economic Assessment, Scalability, and Applications of Aerosol Lignin Micro- and Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 11853-11868.	6.7	95
20	Effect of Anisotropy of Cellulose Nanocrystal Suspensions on Stratification, Domain Structure Formation, and Structural Colors. Biomacromolecules, 2018, 19, 2931-2943.	5.4	61
21	Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments. Small, 2018, 14, e1801256.	10.0	32