List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1685648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Competing characters of Li ⁺ â€Glyme complex in a solvate ionic liquid: High stability in the bulk and rapid desolvation on an electrode surface. Electrochemical Science Advances, 2022, 2, e2100150.	1.2	2
2	Well-organised two-dimensional self-assembly controlled by in situ formation of a Cu(ii)-coordinated rufigallol derivative: a scanning tunnelling microscopy study. Chemical Communications, 2022, 58, 1752-1755.	2.2	8
3	Emerging Disordered Layered-Herringbone Phase in Organic Semiconductors Unveiled by Electron Crystallography. Chemistry of Materials, 2022, 34, 72-83.	3.2	26
4	Competing ferroelectric polarization: hydroxyl flip-flop <i>versus</i> proton-transfer mechanisms. Journal of Materials Chemistry C, 2022, 10, 10099-10105.	2.7	3
5	Tools for studying ion solvation and ion pair formation in ionic liquids: isotopic substitution Raman spectroscopy. Analytical Sciences, 2022, 38, 1025-1031.	0.8	1
6	Field-Induced Electron Spin Resonance of Site-Selective Carrier Accumulation in Field-Effect Transistors Composed of Organic Semiconductor Solid Solutions. Physical Review Applied, 2021, 16, .	1.5	1
7	Thermodynamic aspect of sulfur, polysulfide anion and lithium polysulfide: plausible reaction path during discharge of lithium–sulfur battery. Physical Chemistry Chemical Physics, 2021, 23, 6832-6840.	1.3	11
8	Chiral anthranilic pyrrolidine as custom-made amine catalyst for enantioselective Michael reaction of nitroalkenes with carbonyl compounds. Chemical Communications, 2021, 57, 11457-11460.	2.2	4
9	Effects of Li ion-solvent interaction on ionic transport and electrochemical properties in highly concentrated cyclic carbonate electrolytes. Journal of Non-Crystalline Solids: X, 2021, 11-12, 100071.	0.5	5
10	Dicationic oligotelluroxane or mononuclear telluronium cation? Elucidation of the true catalytic species and activation mechanism of the benzylic carbon-halogen bond. Chemical Communications, 2021, 57, 13736-13739.	2.2	9
11	Regioisomeric control of layered crystallinity in solution-processable organic semiconductors. Chemical Science, 2020, 11, 12493-12505.	3.7	25
12	Accuracy of intermolecular interaction energies, particularly those of hetero-atom containing molecules obtained by DFT calculations with Grimme's D2, D3 and D3BJ dispersion corrections. Physical Chemistry Chemical Physics, 2020, 22, 22508-22519.	1.3	68
13	Dynamic host–guest behavior in halogen-bonded two-dimensional molecular networks investigated by scanning tunneling microscopy at the solid/liquid interface. Nanoscale Advances, 2020, 2, 4895-4901.	2.2	7
14	Structural evaluation and protium-deuterium exchange in 1-ethyl-3-methylimidazolium halide-ethylene glycol mixtures. Journal of Fluorine Chemistry, 2020, 239, 109637.	0.9	3
15	Architecting layered molecular packing in substituted benzobisbenzothiophene (BBBT) semiconductor crystals. CrystEngComm, 2020, 22, 3618-3626.	1.3	18
16	Thermal stabilities and conformational behaviors of isocyanurates and cyclotrimerization energies of isocyanates: a computational study. RSC Advances, 2020, 10, 15955-15965.	1.7	6
17	Effects of Anion on Liquid Structures of Ionic Liquids at Graphene Electrode Interface Analyzed by Molecular Dynamics Simulations. Batteries and Supercaps, 2020, 3, 658-667.	2.4	4
18	Magnitude of attraction in CF4-CH4 interactions: Are CF4-CH4 interactions weaker than average of CF4-CF4 and CH4-CH4 interactions?. Journal of Fluorine Chemistry, 2020, 231, 109468.	0.9	4

ARTICLE IF CITATIONS High Transference Number of Na Ion in Liquid-State Sulfolane Solvates of Sodium 1.5 Bis(fluorosulfonyl)amide. Journal of Physical Chemistry C, 2020, 124, 4459-4469. Supramolecular, Hierarchical, and Energetical Interpretation of Organic Crystals: Generation of 20 1 Supramolecular Chirality in Assemblies of Achiral Molecules. , 2020, , 115-136. Relationship Between Atomic Contact and Intermolecular Interactions: Significant Importance of Dispersion Interactions Between Molecules Without Short Atom〓Atom Contact in Crystals. , 2020, , 137-151. Physicochemical compatibility of highly-concentrated solvate ionic liquids and a low-viscosity 22 1.7 6 solvent. RSC Advance's, 2019, 9, 24922-24927. Role of Cation Structure in CO2 Separation by Ionic Liquid/Sulfonated Polyimide Composite Membrane. 1.4 Membranes, 2019, 9, 81. Studies of Halogen Bonding Induced by Pentafluorosulfanyl Aryl Iodides: A Potential Group of Halogen Bond Donors in a Rational Drug Design. Molecules, 2019, 24, 3610. 24 1.7 11 Key factor governing the physicochemical properties and extent of proton transfer in protic ionic liquids: l'p<i>K</i>_a or chemical structure?. Physical Chemistry Chemical Physics, 2019, 21, 1.3 418-426. Application of Protic Ionic Liquids to CO₂ Separation in a Sulfonated Polyimide-Derived 2.0 26 25 Ion Gel Membrane. ACS Applied Polymer Materials, 2019, 1, 1579-1589. Effect of Electrolyte Composition on Performance and Stability of Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900197. 1.8 Hydration States of Cholinium Phosphate-Type Ionic Liquids as a Function of Water Content. 28 0.5 6 Australian Journal of Chemistry, 2019, 72, 392. Hexagonal array formation by intermolecular halogen bonding using a binary blend of linear building blocks: STM study. Chemical Communications, 2019, 55, 3955-3958. Densities, Viscosities, and Refractive Indices of Binary Room-Temperature Ionic Liquids with Common 30 1.0 14 Cations/Anions. Journal of Chemical & amp; Engineering Data, 2019, 64, 433-441. Density, Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient of Organic Liquid Electrolytes: Part I. Propylene Carbonate + Li, Na, Mg and Ca Cation Salts. Journal of the Electrochemical Society, 2018, 165, A542-A546. 1.3 Magnesium bis(trifluoromethanesulfonyl)amide complexes with triglyme and asymmetric homologues: phase behavior, coordination structures and melting point reduction. Physical 32 1.3 19 Chemistry Chemical Physics, 2018, 20, 7998-8007. Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in 1.2 lithium-glyme solvate ionic liquids. Journal of Chemical Physics, 2018, 148, 193809. Optical absorption and photoconductivity in iodine-excess ionic liquids: the case of 1-alkyl-3-methyl 34 1.3 9 imidazolium iodides. Physical Chemistry Chemical Physics, 2018, 20, 5780-5784. Physicochemical Properties and Electrochemical Behavior of Systematically Functionalized Aryltrifluoroborate-Based Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2018, 122, 1.5 3286-3294. Self-assembled 2D patterns of structural isomers in isobutenyl compounds revealed by STM at 36 solid/liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 2.3 5 580-590.

#	Article	IF	CITATIONS
37	Structure and dynamics of ionic liquids: general discussion. Faraday Discussions, 2018, 206, 291-337.	1.6	8
38	Polymer Electrolytes Containing Solvate Ionic Liquids: A New Approach To Achieve High Ionic Conductivity, Thermal Stability, and a Wide Potential Window. Chemistry of Materials, 2018, 30, 252-261.	3.2	60
39	Sterically crowded hydrogen-bonded hexagonal network frameworks. Materials Chemistry Frontiers, 2018, 2, 338-346.	3.2	22
40	Anion effects on amorphization and crystallization in room-temperature ionic liquids. Chemical Physics Letters, 2018, 712, 30-33.	1.2	6
41	Structure searching methods: general discussion. Faraday Discussions, 2018, 211, 133-180.	1.6	3
42	Crystal structure evaluation: calculating relative stabilities and other criteria: general discussion. Faraday Discussions, 2018, 211, 325-381.	1.6	7
43	Applications of crystal structure prediction – organic molecular structures: general discussion. Faraday Discussions, 2018, 211, 493-539.	1.6	8
44	Direct nucleophilic trifluoromethylation of carbonyl compounds by potent greenhouse gas, fluoroform: Improving the reactivity of anionoid trifluoromethyl species in glymes. Scientific Reports, 2018, 8, 11501.	1.6	28
45	Glyme–Sodium Bis(fluorosulfonyl)amide Complex Electrolytes for Sodium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 16589-16599.	1.5	34
46	Enhanced Layered-Herringbone Packing due to Long Alkyl Chain Substitution in Solution-Processable Organic Semiconductors. Chemistry of Materials, 2017, 29, 1245-1254.	3.2	117
47	Electrophilic Activation of Iodonium Ylides by Halogenâ€Bondâ€Donor Catalysis for Crossâ€Enolate Coupling. Angewandte Chemie - International Edition, 2017, 56, 7653-7657.	7.2	92
48	Odd–even effect in two dimensions induced by the bicomponent blends of isobutenyl compounds. Physical Chemistry Chemical Physics, 2017, 19, 13579-13584.	1.3	6
49	Electrophilic Activation of Iodonium Ylides by Halogenâ€Bondâ€Donor Catalysis for Crossâ€Enolate Coupling. Angewandte Chemie, 2017, 129, 7761-7765.	1.6	29
50	Solvation Structure of Imidazolium Cation in Mixtures of [C4mim][TFSA] Ionic Liquid and Diglyme by NMR Measurements and MD Simulations. Journal of Physical Chemistry B, 2017, 121, 2873-2881.	1.2	10
51	The halogen bond in solution: general discussion. Faraday Discussions, 2017, 203, 347-370.	1.6	5
52	Computational approaches and sigma-hole interactions: general discussion. Faraday Discussions, 2017, 203, 131-163.	1.6	17
53	Beyond the halogen bond: general discussion. Faraday Discussions, 2017, 203, 227-244.	1.6	2
54	Solid-state chemistry and applications: general discussion. Faraday Discussions, 2017, 203, 459-483.	1.6	2

#	Article	IF	CITATIONS
55	Origin of attraction in p-benzoquinone complexes with benzene and p-hydroquinone. Physical Chemistry Chemical Physics, 2017, 19, 23260-23267.	1.3	4
56	Effect of the cation on the stability of cation–glyme complexes and their interactions with the [TFSA] ^{â^'} anion. Physical Chemistry Chemical Physics, 2017, 19, 18262-18272.	1.3	49
57	Long-cycle-life Lithium-sulfur Batteries with Lithium Solvate Ionic Liquids. Electrochemistry, 2017, 85, 680-682.	0.6	33
58	Li ⁺ Local Structure in Li–Tetraglyme Solvate Ionic Liquid Revealed by Neutron Total Scattering Experiments with the ^{6/7} Li Isotopic Substitution Technique. Journal of Physical Chemistry Letters, 2016, 7, 2832-2837.	2.1	44
59	Intermolecular interactions of oligothienoacenes: Do Sâ√S interactions positively contribute to crystal structures of sulfur-containing aromatic molecules?. Journal of Chemical Physics, 2016, 145, 174503.	1.2	23
60	Dissociation and Diffusion of Glyme-Sodium Bis(trifluoromethanesulfonyl)amide Complexes in Hydrofluoroether-Based Electrolytes for Sodium Batteries. Journal of Physical Chemistry C, 2016, 120, 23339-23350.	1.5	30
61	Roomâ€Temperature Phosphorescence of Crystalline Metalâ€Free Organoboron Complex. ChemPhysChem, 2016, 17, 4033-4036.	1.0	25
62	Alkali Metal Salts with Designable Aryltrifluoroborate Anions. Journal of Physical Chemistry B, 2016, 120, 9468-9476.	1.2	8
63	Magnitude and Directionality of Halogen Bond of Benzene with C ₆ F ₅ X, C ₆ H ₅ X, and CF ₃ X (X = I, Br, Cl, and F). Journal of Physical Chemistry A, 2016, 120, 7020-7029.	1.1	32
64	Polyiodides in room-temperature ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 32337-32344.	1.3	18
65	Thermal and Electrochemical Stability of Tetraglyme–Magnesium Bis(trifluoromethanesulfonyl)amide Complex: Electric Field Effect of Divalent Cation on Solvate Stability. Journal of Physical Chemistry C, 2016, 120, 1353-1365.	1.5	88
66	Effects of non-equimolar lithium salt glyme solvate ionic liquid on the control of interfacial degradation in lithium secondary batteries. RSC Advances, 2016, 6, 33043-33047.	1.7	18
67	Li ⁺ Local Structure in Hydrofluoroether Diluted Li-Glyme Solvate Ionic Liquid. Journal of Physical Chemistry B, 2016, 120, 3378-3387.	1.2	81
68	Li ⁺ Solvation and Ionic Transport in Lithium Solvate Ionic Liquids Diluted by Molecular Solvents. Journal of Physical Chemistry C, 2016, 120, 15792-15802.	1.5	114
69	Origin of Attraction in Charge-Transfer Complex: Analysis of Intermolecular Interactions between Quinone and Benzene. Journal of Computer Chemistry Japan, 2016, 15, 223-224.	0.0	1
70	Ester-Linked Alkyl Chain Effect on the 2D Structures of Isobutenyl Compounds: Scanning Tunneling Microscopic Study. Bulletin of the Chemical Society of Japan, 2015, 88, 834-842.	2.0	3
71	Origin of attraction and directionality of hydrogen bond and halogen bond: Analysis by ab initio MO calculations. AIP Conference Proceedings, 2015, , .	0.3	8
72	Origin of Attraction and Directionality of Halogen Bond. Journal of Computer Chemistry Japan, 2015, 13, 328-329.	0.0	2

#	Article	IF	CITATIONS
73	Li ⁺ solvation in glyme–Li salt solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 8248-8257.	1.3	222
74	Effect of Ionic Size on Solvate Stability of Glyme-Based Solvate Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 1523-1534.	1.2	92
75	Pentaglyme–K salt binary mixtures: phase behavior, solvate structures, and physicochemical properties. Physical Chemistry Chemical Physics, 2015, 17, 2838-2849.	1.3	27
76	Reinforcement of guest selectivity through the self-assembly of host molecules: selective recognition of lithium ions by dimerizable tricarboxylic acids. Chemical Communications, 2015, 51, 12920-12923.	2.2	7
77	Structures of [Li(glyme)] ⁺ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 126-129.	1.3	87
78	1.ã,°ãƒ©ã,╋ƒç³»ãƒªãƒã,¦ãƒæ⁰¶åª'å'Œã,╋,ªãƒ³æ¶²ä½"ã®åŒ−å¦ã⊷応ç". Electrochemistry, 2014, 82, 1079-2	1084.	3
79	Imidazolium Salt atalyzed Friedel–Craftsâ€Type Conjugate Addition of Indoles: Analysis of Indole/Imidazolium Complex by High Level ab Initio Calculations. Asian Journal of Organic Chemistry, 2014, 3, 497-503.	1.3	17
80	Static and Transport Properties of Alkyltrimethylammonium Cation-Based Room-Temperature Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 4590-4599.	1.2	17
81	Bicomponent blend-directed amplification of the alkyl chain effect on the 2D structures. Chemical Communications, 2014, 50, 13146-13149.	2.2	12
82	Physicochemical properties of pentaglyme–sodium bis(trifluoromethanesulfonyl)amide solvate ionic liquid. Physical Chemistry Chemical Physics, 2014, 16, 11737-11746.	1.3	60
83	Transport and Electrochemical Properties of Three Quaternary Ammonium Ionic Liquids and Lithium Salts Doping Effects Studied by NMR Spectroscopy. Journal of Chemical & Engineering Data, 2014, 59, 1944-1954.	1.0	31
84	Comparative Study on Physicochemical Properties of Protic Ionic Liquids Based on Allylammonium and Propylammonium Cations. Journal of Chemical & Engineering Data, 2013, 58, 2724-2732.	1.0	50
85	Phase Diagrams and Solvate Structures of Binary Mixtures of Glymes and Na Salts. Journal of Physical Chemistry B, 2013, 117, 15072-15085.	1.2	63
86	Cation and Anion Dependence of Stable Geometries and Stabilization Energies of Alkali Metal Cation Complexes with FSA [–] , FTA [–] , and TFSA [–] Anions: Relationship with Physicochemical Properties of Molten Salts. Journal of Physical Chemistry B, 2013, 117, 16212-16218.	1.2	24
87	Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids. Journal of Chemical Physics, 2013, 139, 174504.	1.2	63
88	CCSD(T) level interaction energy for halogen bond between pyridine and substituted iodobenzenes: origin and additivity of substituent effects. Physical Chemistry Chemical Physics, 2013, 15, 6088.	1.3	43
89	Selective <i>O</i> -Difluoromethylation of 1,3-Diones by Bromodifluoromethylating Reagents. Organic Letters, 2013, 15, 1044-1047.	2.4	54
90	Origin of Attraction in Chalgogen–Nitrogen Interaction of 1,2,5-Chalcogenadiazole Dimers. Journal of Physical Chemistry B, 2013, 117, 6849-6855.	1.2	65

#	Article	IF	CITATIONS
91	Unusual Li ⁺ Ion Solvation Structure in Bis(fluorosulfonyl)amide Based Ionic Liquid. Journal of Physical Chemistry C, 2013, 117, 19314-19324.	1.5	133
92	Tetraalkylammonium-Templated Stereoselective Norrish–Yang Cyclization. Organic Letters, 2013, 15, 5994-5997.	2.4	28
93	4.è¨ç®—化å¦ã«ã,ˆã,<ã,฿,ªãƒ³æ¶²ä½"黻解質ã®ç"ç©¶. Electrochemistry, 2013, 81, 1001-1005.	0.6	0
94	Encapsulationâ€Induced Remarkable Stability of a Hydrogenâ€Bonded Heterocapsule. Chemistry - A European Journal, 2013, 19, 3685-3692.	1.7	14
95	Intermolecular Interactions in Li ⁺ â€glyme and Li ⁺ â€glyme–TFSA ^{â^'} Complexes: Relationship with Physicochemical Properties of [Li(glyme)][TFSA] Ionic Liquids. ChemPhysChem, 2013, 14, 1993-2001.	1.0	79
96	Cation versus Radical: Studies on the C/O Regioselectivity in Electrophilic Triâ€, Di―and Monofluoromethylations of βâ€Ketoesters. ChemistryOpen, 2012, 1, 221-226.	0.9	47
97	Interactions between dehydrobenzo[12]annulene (DBA) and gas molecules: do the preorganized acetylenes work cooperatively?. Physical Chemistry Chemical Physics, 2012, 14, 13918.	1.3	7
98	Crystal Structure of Quinine: The Effects of Vinyl and Methoxy Groups on Molecular Assemblies of Cinchona Alkaloids Cannot Be Ignored. Chemistry - an Asian Journal, 2012, 7, 2607-2614.	1.7	18
99	Comparative Study of Imidazolium- and Pyrrolidinium-Based Ionic Liquids: Thermodynamic Properties. Journal of Physical Chemistry B, 2012, 116, 5406-5413.	1.2	34
100	Halogen bond effect on bundling of hydrogen bonded 2-fold helical columns. CrystEngComm, 2012, 14, 5749.	1.3	17
101	CH/Ï€ interactions. Annual Reports on the Progress of Chemistry Section C, 2012, 108, 69.	4.4	99
102	Factors Controlling the Diffusion of Ions in Ionic Liquids. ChemPhysChem, 2012, 13, 1664-1670.	1.0	78
103	Magnitude of CH/O interactions between carbohydrate and water. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	10
104	Preference of the monodentate contact in the CH/Ï€ interaction between an alkyl group and a single phenyl ring: Stable structures of benzene–ethane clusters. Chemical Physics Letters, 2012, 537, 11-15.	1.2	6
105	Magnitude and Origin of the Attraction and Directionality of the Halogen Bonds of the Complexes of C ₆ F ₅ X and C ₆ H ₅ X (X=I, Br, Cl and F) with Pyridine. Chemistry - A European Journal, 2012, 18, 951-960.	1.7	118
106	Analysis of Weak Intermolecular Interactions by ab initio Molecular Orbital Calculations. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 831-841.	0.0	2
107	Effects of conformational flexibility of alkyl chains of cations on diffusion of ions in ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 5987.	1.3	59
108	Magnitude and Nature of Carbohydrate–Aromatic Interactions in Fucose–Phenol and Fucose–Indole Complexes: CCSD(T) Level Interaction Energy Calculations. Journal of Physical Chemistry A, 2011, 115, 11256-11262.	1.1	22

#	Article	IF	CITATIONS
109	Liquid Structure of and Li ⁺ Ion Solvation in Bis(trifluoromethanesulfonyl)amide Based Ionic Liquids Composed of 1-Ethyl-3-methylimidazolium and <i>N</i> -Methyl- <i>N</i> -propylpyrrolidinium Cations. Journal of Physical Chemistry B, 2011, 115, 12179-12191.	1.2	102
110	Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes. Journal of the American Chemical Society, 2011, 133, 13121-13129.	6.6	663
111	Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. Journal of Chemical Physics, 2011, 135, 084505.	1.2	92
112	Experimental and theoretical determination of the accurate CH/΀ interaction energies in benzene–alkane clusters: correlation between interaction energy and polarizability. Physical Chemistry Chemical Physics, 2011, 13, 14131.	1.3	52
113	Physicochemical Properties and Application of Ionic Liquids with N-P Bonds as Lithium Secondary Battery Electrolytes. Journal of the Electrochemical Society, 2011, 158, A1023.	1.3	9
114	First principle lattice energy calculations for enantiopure and racemic crystals of α-(trifluoromethyl)lactic acid: Is self-disproportionation of enantiomers controlled by thermodynamic stability of crystals?. Journal of Fluorine Chemistry, 2010, 131, 461-466.	0.9	24
115	Effects of cation and anion on physical properties of room-temperature ionic liquids. Journal of Molecular Liquids, 2010, 152, 9-13.	2.3	118
116	Studies on the translational and rotational motions of ionic liquids composed of N-methyl-N-propyl-pyrrolidinium (P13) cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. Journal of Chemical Physics, 2010, 133, 194505.	1.2	129
117	First-Principles Lattice Energy Calculation of Urea and Hexamine Crystals by a Combination of Periodic DFT and MP2 Two-Body Interaction Energy Calculations. Journal of Physical Chemistry B, 2010, 114, 6799-6805.	1.2	34
118	Origin of the Low-Viscosity of [emim][(FSO ₂) ₂ N] Ionic Liquid and Its Lithium Salt Mixture: Experimental and Theoretical Study of Self-Diffusion Coefficients, Conductivities, and Intermolecular Interactions. Journal of Physical Chemistry B, 2010, 114, 16329-16336.	1.2	144
119	Interactions of Perfluoroalkyltrifluoroborate Anions with Li Ion and Imidazolium Cation: Effects of Perfluoroalkyl Chain on Motion of Ions in Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 11390-11396.	1.2	45
120	Raman Spectroscopic Studies and Ab Initio Calculations on Conformational Isomerism of 1-Butyl-3-methylimidazolium Bis-(trifluoromethanesulfonyl)amide Solvated to a Lithium Ion in Ionic Liquids: Effects of the Second Solvation Sphere of the Lithium Ion. Journal of Physical Chemistry B, 2010, 114, 6513-6521.	1.2	107
121	Bipyridine Derivatives at a Solid/Liquid Interface: Effects of the Number and Length of Peripheral Alkyl Chains. Langmuir, 2010, 26, 3376-3381.	1.6	36
122	Mechanism of Orientational Isomerism of Unsymmetrical Guests in a Heterodimeric Capsule: Analysis by Ab Initio Molecular Orbital Calculations. Journal of Physical Chemistry B, 2010, 114, 5335-5341.	1.2	11
123	Dependence of the Conformational Isomerism in 1- <i>n</i> Butyl-3-methylimidazolium Ionic Liquids on the Nature of the Halide Anion. Journal of Physical Chemistry B, 2010, 114, 11715-11724.	1.2	66
124	Alkoxy chains in ionic liquid anions; effect of introducing ether oxygen into perfluoroalkylborate on physical and thermal properties. Chemical Communications, 2010, 46, 1730.	2.2	43
125	Specific Interaction between Chloroform and the Pockets of Triangular Annulene Derivatives Providing Symmetry Carryâ€Over Crystallization. Chemistry - A European Journal, 2009, 15, 13336-13340.	1.7	23
126	Magnitude and Nature of Carbohydrateâ^'Aromatic Interactions: Ab Initio Calculations of Fucoseâ^'Benzene Complex. Journal of Physical Chemistry B, 2009, 113, 5617-5621.	1.2	46

#	Article	IF	CITATIONS
127	Molecular Dynamics Simulations of Ionic Liquids: Cation and Anion Dependence of Self-Diffusion Coefficients of Ions. Journal of Physical Chemistry B, 2009, 113, 10641-10649.	1.2	236
128	Relationships between center atom species (N, P) and ionic conductivity, viscosity, density, self-diffusion coefficient of quaternary cation room-temperature ionic liquids. Physical Chemistry Chemical Physics, 2009, 11, 3509.	1.3	80
129	Experimental and theoretical determination of the accurate interaction energies in benzene–halomethane: the unique nature of the activated CH/π interaction of haloalkanes. Physical Chemistry Chemical Physics, 2008, 10, 2836.	1.3	77
130	Nature and physical origin of CH/i̇́€ interaction: significant difference from conventional hydrogen bonds. Physical Chemistry Chemical Physics, 2008, 10, 2584.	1.3	311
131	CH/Ï€ interactions in methane clusters with polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics, 2008, 10, 2860.	1.3	54
132	Quaternary Ammonium Room-Temperature Ionic Liquid/Lithium Salt Binary Electrolytes: Electrochemical Study. Journal of the Electrochemical Society, 2008, 155, A421.	1.3	96
133	Molecular Motions and Ion Diffusions of the Room-Temperature Ionic Liquid 1,2-Dimethyl-3-propylimidazolium Bis(trifluoromethylsulfonyl)amide (DMPImTFSA) Studied by ¹ H, ¹³ C, and ¹⁹ F NMR. Journal of Physical Chemistry A, 2008, 112, 12027-12036.	1.1	67
134	Quaternary Ammonium Room-Temperature Ionic Liquid Including an Oxygen Atom in Side Chain/Lithium Salt Binary Electrolytes:  Ionic Conductivity and ¹ H, ⁷ Li, and ¹⁹ F NMR Studies on Diffusion Coefficients and Local Motions. Journal of Physical Chemistry B, 2008, 112, 1189-1197.	1.2	84
135	Conformational Analysis of 1-Butyl-3-methylimidazolium by CCSD(T) Level Ab Initio Calculations: Effects of Neighboring Anions. Journal of Physical Chemistry B, 2008, 112, 7739-7747.	1.2	84
136	Quaternary Ammonium Room-Temperature Ionic Liquid Including an Oxygen Atom in Side Chain/Lithium Salt Binary Electrolytes: Ab Initio Molecular Orbital Calculations of Interactions between Ions. Journal of Physical Chemistry B, 2008, 112, 9914-9920.	1.2	62
137	Ion Pair Formation in [bmim]I Ionic Liquids. Journal of Physical Chemistry B, 2008, 112, 15426-15430.	1.2	63
138	Analysis of interactions between 1-butyl-3-methylimidazolium cation and halide anions (Cl-, Br- and I-) by ab initio calculations: anion size effects on preferential locations of anions. Molecular Physics, 2008, 106, 1621-1629.	0.8	42
139	Low Melting and Electrochemically Stable Ionic Liquids Based on Asymmetric Fluorosulfonyl(trifluoromethylsulfonyl)amide. Chemistry Letters, 2008, 37, 1020-1021.	0.7	65
140	Imidazolium-Based Room-Temperature Ionic Liquid for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2007, 154, A173.	1.3	195
141	Modeling and Testing of Molecular Wire Sensors To Detect a Nucleic Acid Base. Journal of Physical Chemistry C, 2007, 111, 3495-3504.	1.5	24
142	Theoretical analysis of the hydrogen bond of imidazolium C2–H with anions. Physical Chemistry Chemical Physics, 2007, 9, 4780.	1.3	217
143	Magnitude and Nature of Interactions in Benzeneâ [°] 'X (X = Ethylene and Acetylene) in the Gas Phase: Significantly Different CH/Ï€ Interaction of Acetylene As Compared with Those of Ethylene and Methane. Journal of Physical Chemistry A, 2007, 111, 753-758.	1.1	110
144	Origin of Attraction, Magnitude, and Directionality of Interactions in Benzene Complexes with Pyridinium Cations. Journal of the American Chemical Society, 2007, 129, 8656-8662.	6.6	152

#	Article	IF	CITATIONS
145	Fluorinated Diphenylpolyenes:  Crystal Structures and Emission Properties. Journal of Physical Chemistry A, 2007, 111, 13441-13451.	1.1	68
146	Self-assembly of bipyridine derivatives at solid/liquid interface: Effects of the number of peripheral alkyl chains and metal coordination on the two-dimensional structures. Surface Science, 2007, 601, 2520-2524.	0.8	14
147	Origin of the Attraction in Aliphatic Câ~'H/Ĩ€ Interactions:Â Infrared Spectroscopic and Theoretical Characterization of Gas-Phase Clusters of Aromatics with Methane. Journal of Physical Chemistry A, 2006, 110, 10583-10590.	1.1	99
148	Magnitude of the CH/Ï€ Interaction in the Gas Phase:Â Experimental and Theoretical Determination of the Accurate Interaction Energy in Benzene-methane. Journal of Physical Chemistry A, 2006, 110, 4397-4404.	1.1	139
149	Magnitude and Directionality of the Interaction Energy of the Aliphatic CH/π Interaction:  Significant Difference from Hydrogen Bond. Journal of Physical Chemistry A, 2006, 110, 10163-10168.	1.1	124
150	Physicochemical Properties and Structures of Room-Temperature Ionic Liquids. 3. Variation of Cationic Structures. Journal of Physical Chemistry B, 2006, 110, 2833-2839.	1.2	593
151	Fluorescence Spectroscopic Properties and Crystal Structure of a Series of Donorâ^'Acceptor Diphenylpolyenes. Journal of Physical Chemistry A, 2006, 110, 13379-13387.	1.1	49
152	Intermolecular Interaction between Hexafluorobenzene and Benzene:  Ab Initio Calculations Including CCSD(T) Level Electron Correlation Correction. Journal of Physical Chemistry A, 2006, 110, 2027-2033.	1.1	130
153	Two-Dimensional Structure Control by Molecular Width Variation with Metal Coordination. Langmuir, 2006, 22, 6910-6914.	1.6	29
154	Estimated MP2 and CCSD(T) interaction energies of n-alkane dimers at the basis set limit: Comparison of the methods of Helgaker et al. and Feller. Journal of Chemical Physics, 2006, 124, 114304.	1.2	100
155	How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. Journal of Physical Chemistry B, 2006, 110, 19593-19600.	1.2	1,106
156	Intermolecular interactions of nitrobenzene-benzene complex and nitrobenzene dimer: Significant stabilization of slipped-parallel orientation by dispersion interaction. Journal of Chemical Physics, 2006, 125, 124304.	1.2	50
157	2,6-Diaminopyridine derivatives as models of molecular sensor for nucleic acid base detection: ab initio calculations of electronic effects induced by hydrogen bonds formation. Biosensors and Bioelectronics, 2005, 20, 1452-1457.	5.3	10
158	Lewis Acidity/Basicity of ï€-Electron Systems: Theoretical Study of a Molecular Interaction between a Ï€ System and a Lewis Acid/Base. Chemistry - A European Journal, 2005, 11, 4458-4464.	1.7	32
159	Ab initiocalculations of structures and interaction energies of toluene dimers including CCSD(T) level electron correlation correction. Journal of Chemical Physics, 2005, 122, 144323.	1.2	83
160	Synthesis and Structure of 16 π Octaalkyltetraphenylporphyrins. Journal of the American Chemical Society, 2005, 127, 14540-14541.	6.6	91
161	Interactions with Aromatic Rings. Structure and Bonding, 2005, , 149-193.	1.0	91
162	Magnitude and Directionality of Interaction in Ion Pairs of Ionic Liquids:  Relationship with Ionic Conductivity. Journal of Physical Chemistry B, 2005, 109, 16474-16481.	1.2	468

#	Article	IF	CITATIONS
163	Magnitude and orientation dependence of intermolecular interaction of perfluoropropane dimer studied by high-level ab initio calculations: Comparison with propane dimer. Journal of Chemical Physics, 2004, 121, 9917-9924.	1.2	22
164	Magnitude of Interaction betweenn-Alkane Chains and Its Anisotropy:Â High-Level ab Initio Calculations ofn-Butane,n-Petane, andn-Hexane Dimers. Journal of Physical Chemistry A, 2004, 108, 10311-10316.	1.1	52
165	High-level ab initio computations of structures and interaction energies of naphthalene dimers: Origin of attraction and its directionality. Journal of Chemical Physics, 2004, 120, 647-659.	1.2	169
166	Theoretical Study of the Câ^'F/Ï€ Interaction:  Attractive Interaction between Fluorinated Alkane and an Electron-Deficient π-System. Journal of Physical Chemistry A, 2004, 108, 6744-6749.	1.1	71
167	Is the Cation/ï̃€ Interaction in Alkaline-Earth-Metal Dication/Benzene Complexes a Covalent Interaction?. Journal of Physical Chemistry A, 2003, 107, 10414-10418.	1.1	51
168	Ab initio calculation of interaction nature of borazine (B3N3H6) dimer. Journal of Chemical Physics, 2003, 119, 10081-10087.	1.2	26
169	Conformational Study of Isobutenylene Chains in Tandem Claisen Rearrangement Products. Insights from X-ray Crystallography and1H NMR for Salicylideneaniline Derivatives. Bulletin of the Chemical Society of Japan, 2002, 75, 831-839.	2.0	20
170	Model Chemistry Calculations of Thiophene Dimer Interactions: Origin of π-Stacking. Journal of the American Chemical Society, 2002, 124, 12200-12209.	6.6	199
171	Origin of Attraction and Directionality of the Ï€/Ĩ€ Interaction: Model Chemistry Calculations of Benzene Dimer Interaction. Journal of the American Chemical Society, 2002, 124, 104-112.	6.6	1,016
172	The Interaction of Benzene with Chloro- and Fluoromethanes:  Effects of Halogenation on CH/π Interaction. Journal of Physical Chemistry A, 2002, 106, 4423-4428.	1.1	110
173	High Level ab Initio Calculations of Intermolecular Interaction of Propane Dimer:  Orientation Dependence of Interaction Energy. Journal of Physical Chemistry A, 2002, 106, 3867-3872.	1.1	38
174	Magnitude and orientation dependence of intermolecular interaction between perfluoroalkanes: High level ab initio calculations of CF4 and C2F6 dimers. Journal of Chemical Physics, 2002, 116, 3309-3315.	1.2	49
175	Analysis of the intermolecular interaction between CH3OCH3, CF3OCH3, CF3OCF3, and CH4: High levelab initio calculations. Journal of Computational Chemistry, 2002, 23, 1472-1479.	1.5	13
176	The Origin of the Cation/π Interaction:  The Significant Importance of the Induction in Li+ and Na+ Complexes. Journal of Physical Chemistry A, 2001, 105, 769-773.	1.1	228
177	Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model. Journal of Chemical Physics, 2001, 114, 3949-3957.	1.2	666
178	Cooperative Enhancement of Water Binding to Crownophane by Multiple Hydrogen Bonds:  Analysis by High Level ab Initio Calculations. Journal of the American Chemical Society, 2001, 123, 4255-4258.	6.6	48
179	Importance of secondary electrostatic interactions in hydrogen-bonding complexes: an investigation using the self-consistent charge and configuration method for subsystems. Chemical Physics Letters, 2000, 318, 203-209.	1.2	29
180	Effects of the higher electron correlation correction on the calculated intermolecular interaction energies of benzene and naphthalene dimers: comparison between MP2 and CCSD(T) calculations. Chemical Physics Letters, 2000, 319, 547-554.	1.2	219

#	Article	IF	CITATIONS
181	Origin of the Attraction and Directionality of the NH/Ï€ Interaction:Â Comparison with OH/Ï€ and CH/Ï€ Interactions. Journal of the American Chemical Society, 2000, 122, 11450-11458.	6.6	371
182	The Magnitude of the CH/Ï€ Interaction between Benzene and Some Model Hydrocarbons. Journal of the American Chemical Society, 2000, 122, 3746-3753.	6.6	508
183	Effects of basis set and electron correlation on the calculated interaction energies of hydrogen bonding complexes: MP2/cc-pV5Z calculations of H2O–MeOH, H2O–Me2O, H2O–H2CO, MeOH–MeOH, and HCOOH–HCOOH complexes. Journal of Chemical Physics, 1999, 110, 11906-11910.	1.2	120
184	High-level ab initio computations of structures and relative energies of two isomers of the CO2 trimer. Journal of Chemical Physics, 1999, 111, 3846-3854.	1.2	43
185	High-Level ab Initio Calculations of Interaction Energies of C2H4â^'CH4and C2H6â^'CH4Dimers:Â A Model Study of CH/İ€ Interaction. Journal of Physical Chemistry A, 1999, 103, 8265-8271.	1.1	83
186	Intermolecular interaction potentials of methane and ethylene dimers calculated with the MÃ,ller–Plesset, coupled cluster and density functional methods. Chemical Physics Letters, 1998, 287, 202-208.	1.2	118
187	A new ab initio based model potential for methane. Chemical Physics Letters, 1998, 287, 327-332.	1.2	32
188	New Medium-Size Basis Sets To Evaluate the Dispersion Interaction of Hydrocarbon Molecules. Journal of Physical Chemistry A, 1998, 102, 2091-2094.	1.1	86
189	Comparison of atomic charge distributions obtained from different procedures: basis set and electron correlation effects. Computational and Theoretical Chemistry, 1996, 365, 81-88.	1.5	28
190	Basis set effects on the calculated bonding energies of neutral benzene dimers: importance of diffuse polarization functions. Chemical Physics Letters, 1996, 252, 206-210.	1.2	89
191	Basis set effects on the intermolecular interaction of hydrocarbon molecules obtained by an ab initio molecular orbital method: evaluation of dispersion energy. Computational and Theoretical Chemistry, 1994, 307, 107-118.	1.5	89
192	Refinement of Nonbonding Interaction Potential Parameters for Methane on the Basis of the Pair Potential Obtained by MP3/6-311G(3d,3p)-Level ab Initio Molecular Orbital Calculations: The Anisotropy of H/H Interaction. The Journal of Physical Chemistry, 1994, 98, 1830-1833.	2.9	55
193	Conformational analysis of 1,2-dimethoxyethane by ab initio molecular orbital and molecular mechanics calculations: stabilization of the TGG' rotamer by the 1,5 CH3/O nonbonding attractive interaction. The Journal of Physical Chemistry, 1993, 97, 1346-1350.	2.9	120
194	Basis set effects on the intermolecular interaction energies of methane dimers obtained by the Moeller-Plesset perturbation theory calculation. The Journal of Physical Chemistry, 1991, 95, 2272-2278.	2.9	60
195	LiNi _{0.5} Mn _{1.5} O ₄ -Hybridized Gel Polymer Cathode and Gel Polymer Electrolyte Containing a Sulfolane-Based Highly Concentrated Electrolyte for the Fabrication of a 5 V Class of Flexible Lithium Batteries. ACS Omega, 0, , .	1.6	3
196	Halogen bond-directed self-assembly in bicomponent blends at the solid/liquid interface: Effect of the alkyl chain substitution position. Physical Chemistry Chemical Physics, 0, , .	1.3	5