Yuan Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1685611/publications.pdf

Version: 2024-02-01

35 papers	3,274 citations	25 h-index	34 g-index
35	35	35	3743
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Impacts of hydrophobic, hydrophilic, superhydrophobic and superhydrophilic nanofibrous substrates on the thin film composite forward osmosis membranes. Journal of Environmental Chemical Engineering, 2022, 10, 106958.	3.3	7
2	Mitigation of membrane biofouling via immobilizing Ag-MOFs on composite membrane surface for extractive membrane bioreactor. Water Research, 2022, 209, 117940.	5.3	19
3	Engineering anti-scaling superhydrophobic membranes for photothermal membrane distillation. Journal of Membrane Science, 2022, 650, 120423.	4.1	28
4	Effects of different secondary nano-scaled roughness on the properties of omniphobic membranes for brine treatment using membrane distillation. Journal of Membrane Science, 2021, 620, 118918.	4.1	35
5	Progress of photothermal membrane distillation for decentralized desalination: A review. Water Research, 2021, 201, 117299.	5.3	73
6	Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation. Journal of Membrane Science, 2021, 634, 119433.	4.1	37
7	Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Advances in Colloid and Interface Science, 2021, 297, 102547.	7.0	16
8	Engineering a superwetting thin film nanofibrous composite membrane with excellent antifouling and self-cleaning properties to separate surfactant-stabilized oil-in-water emulsions. Journal of Membrane Science, 2020, 596, 117721.	4.1	57
9	Fabrication of bead-on-string polyacrylonitrile nanofibrous air filters with superior filtration efficiency and ultralow pressure drop. Separation and Purification Technology, 2020, 237, 116377.	3.9	75
10	Engineering polydopamine-glued sandwich-like nanocomposites with antifouling and antibacterial properties for the development of advanced mixed matrix membranes. Separation and Purification Technology, 2020, 237, 116326.	3.9	25
11	Property Characterization and Mechanism Analysis of Polyoxometalates-Functionalized PVDF Membranes by Electrochemical Impedance Spectroscopy. Membranes, 2020, 10, 214.	1.4	5
12	Electrospray-Printed Three-Tiered Composite Membranes with Enhanced Mass Transfer Coefficients for Phenol Removal in an Aqueous–Aqueous Membrane Extractive Process. Environmental Science & Technology, 2020, 54, 7611-7618.	4.6	26
13	Engineering highly effective nanofibrous membranes to demulsify surfactant-stabilized oil-in-water emulsions. Journal of Membrane Science, 2020, 611, 118398.	4.1	38
14	Electrospun PTFE/PI bi-component membranes with robust 3D superhydrophobicity and high water permeability for membrane distillation. Journal of Membrane Science, 2020, 611, 118420.	4.1	26
15	Development of robust and superhydrophobic membranes to mitigate membrane scaling and fouling in membrane distillation. Journal of Membrane Science, 2020, 601, 117962.	4.1	118
16	Engineering hierarchically structured superhydrophobic PTFE/POSS nanofibrous membranes for membrane distillation. Desalination, 2020, 486, 114481.	4.0	66
17	G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	30
18	Design, development and evaluation of nanofibrous composite membranes with opposing membrane wetting properties for extractive membrane bioreactors. Journal of Membrane Science, 2018, 551, 55-65.	4.1	33

#	Article	IF	CITATIONS
19	Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 2018, 77, 69-94.	11.8	582
20	Development of high performance nanofibrous composite membranes by optimizing polydimethylsiloxane architectures for phenol transport. Journal of Membrane Science, 2018, 549, 638-648.	4.1	26
21	Development of highly-efficient ZIF-8@PDMS/PVDF nanofibrous composite membrane for phenol removal in aqueous-aqueous membrane extractive process. Journal of Membrane Science, 2018, 568, 121-133.	4.1	52
22	Effects of internal concentration polarization and membrane roughness on phenol removal in extractive membrane bioreactor. Journal of Membrane Science, 2018, 563, 309-319.	4.1	28
23	Preparation of Polydimethylsiloxane–Polyvinylidene Fluoride Composite Membranes for Phenol Removal in Extractive Membrane Bioreactor. Industrial & Engineering Chemistry Research, 2017, 56, 3436-3445.	1.8	31
24	A high-performance and robust membrane with switchable super-wettability for oil/water separation under ultralow pressure. Journal of Membrane Science, 2017, 543, 123-132.	4.1	125
25	Synthesis and characterization of high-performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes. Journal of Membrane Science, 2015, 486, 151-160.	4.1	80
26	Electrospun Superhydrophobic Membranes with Unique Structures for Membrane Distillation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16035-16048.	4.0	234
27	Fabrication of Bioinspired Composite Nanofiber Membranes with Robust Superhydrophobicity for Direct Contact Membrane Distillation. Environmental Science & Environmental Science & 2014, 48, 6335-6341.	4.6	216
28	Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates. Separation and Purification Technology, 2013, 118, 727-736.	3.9	187
29	Engineering superhydrophobic surface on poly(vinylidene fluoride) nanofiber membranes for direct contact membrane distillation. Journal of Membrane Science, 2013, 440, 77-87.	4.1	292
30	Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. Journal of Membrane Science, 2013, 425-426, 30-39.	4.1	364
31	Fabrication of silver-coated silica microspheres through mussel-inspired surface functionalization. Journal of Colloid and Interface Science, 2011, 358, 567-574.	5. 0	96
32	Antibacterial surfaces through dopamine functionalization and silver nanoparticle immobilization. Materials Chemistry and Physics, 2010, 121, 534-540.	2.0	150
33	Surface initiated ATRP of acrylic acid on dopamineâ€functionalized AAO membranes. Journal of Applied Polymer Science, 2010, 117, 534-541.	1.3	21
34	A facile method for preparing highly conductive and reflective surface-silvered polyimide films. Applied Surface Science, 2009, 255, 8207-8212.	3.1	72
35	Performance, fouling and cleaning of a thin film composite hollow fiber membrane during fertiliser-drawn forward osmosis process for micro-polluted water. Environmental Science: Water Research and Technology, 0, , .	1.2	4