Yu-Chen Pei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1685470/publications.pdf

Version: 2024-02-01

361388 377849 1,695 34 20 34 citations h-index g-index papers 35 35 35 2470 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	In situ observation of the crystal structure transition of Pt–Sn intermetallic nanoparticles during deactivation and regeneration. Chemical Communications, 2021, 57, 5454-5457.	4.1	2
2	Tandem Synthesis of ϵâ€Caprolactam from Cyclohexanone by an Acidified Metalâ€organic Framework. ChemCatChem, 2021, 13, 3084-3089.	3.7	3
3	Tandem Condensationâ€Hydrogenation to Produce Alkylated Nitriles Using Bifunctional Catalysts: Platinum Nanoparticles Supported on MOFâ€Derived Carbon. ChemCatChem, 2020, 12, 602-608.	3.7	12
4	Catalytic upcycling of high-density polyethylene via a processive mechanism. Nature Catalysis, 2020, 3, 893-901.	34.4	262
5	Single Molecule Investigation of Nanoconfinement Hydrophobicity in Heterogeneous Catalysis. Journal of the American Chemical Society, 2020, 142, 13305-13309.	13.7	31
6	Subâ€5 nm Intermetallic Nanoparticles Confined in Mesoporous Silica Wells for Selective Hydrogenation of Acetylene to Ethylene. ChemCatChem, 2020, 12, 3022-3029.	3.7	14
7	Pairwise semi-hydrogenation of alkyne to <i>cis</i> -alkene on platinum-tin intermetallic compounds. Nanoscale, 2020, 12, 8519-8524.	5 . 6	12
8	Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. ACS Applied Materials & Eamp; Interfaces, 2020, 12, 23002-23009.	8.0	27
9	Influence of Sn on Stability and Selectivity of Pt–Sn@UiO-66-NH ₂ in Furfural Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 17495-17501.	3.7	16
10	Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging. Nature Communications, 2019, 10, 4815.	12.8	44
11	Catalytic properties of intermetallic platinum-tin nanoparticles with non-stoichiometric compositions. Journal of Catalysis, 2019, 374, 136-142.	6.2	29
12	Atomic-Scale Structure of Mesoporous Silica-Encapsulated Pt and PtSn Nanoparticles Revealed by Dynamic Nuclear Polarization-Enhanced 29Si MAS NMR Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 7299-7307.	3.1	9
13	Kinetics, energetics, and size dependence of the transformation from Pt to ordered PtSn intermetallic nanoparticles. Nanoscale, 2019, 11, 5336-5345.	5.6	25
14	Aerobic oxidation of the C–H bond under ambient conditions using highly dispersed Co over highly porous N-doped carbon. Green Chemistry, 2019, 21, 1461-1466.	9.0	20
15	Room-Temperature Tandem Condensation-Hydrogenation Catalyzed by Porous C3N4 Nanosheet-Supported Pd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 3356-3363.	6.7	15
16	Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Research, 2018, 11, 3469-3479.	10.4	46
17	Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal†Organic Frameworks. Catalysis Letters, 2018, 148, 940-945.	2.6	19
18	In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement. Nature Catalysis, 2018, 1, 135-140.	34.4	99

#	Article	IF	CITATIONS
19	Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 6186-6192.	10.3	50
20	Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction. Journal of the American Chemical Society, 2017, 139, 4762-4768.	13.7	265
21	Silicaâ€Encapsulated Ptâ€Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogenâ€Induced Polarization of Gases and Liquids. Angewandte Chemie - International Edition, 2017, 56, 3925-3929.	13.8	73
22	Metal–Organicâ€Frameworkâ€Derived Carbons: Applications as Solidâ€Base Catalyst and Support for Pd Nanoparticles in Tandem Catalysis. Chemistry - A European Journal, 2017, 23, 4266-4270.	3.3	66
23	Silicaâ€Encapsulated Ptâ€Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogenâ€Induced Polarization of Gases and Liquids. Angewandte Chemie, 2017, 129, 3983-3987.	2.0	37
24	Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amineâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 16589-16593.	2.0	30
25	Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amineâ∈Functionalized Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 16371-16375.	13.8	87
26	Intermetallic structures with atomic precision for selective hydrogenation of nitroarenes. Journal of Catalysis, 2017, 356, 307-314.	6.2	53
27	Synthesis of Monodisperse Palladium Nanoclusters Using Metal–Organic Frameworks as Sacrificial Templates. ChemNanoMat, 2016, 2, 810-815.	2.8	18
28	Impact of Linker Engineering on the Catalytic Activity of Metal–Organic Frameworks Containing Pd(II)–Bipyridine Complexes. ACS Catalysis, 2016, 6, 6324-6328.	11.2	89
29	A Ship-in-a-Bottle Strategy To Synthesize Encapsulated Intermetallic Nanoparticle Catalysts: Exemplified for Furfural Hydrogenation. ACS Catalysis, 2016, 6, 1754-1763.	11.2	148
30	Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process. Surface Science, 2016, 648, 299-306.	1.9	20
31	An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures. Nanoscale, 2015, 7, 16721-16728.	5.6	21
32	In Situ X-ray Absorption Spectroscopy Studies of Kinetic Interaction between Platinum(II) Ions and UiO-66 Series Metal–Organic Frameworks. Journal of Physical Chemistry B, 2014, 118, 14168-14176.	2.6	22
33	Geometryâ€Assisted Threeâ€Dimensional Superlocalization Imaging of Singleâ€Molecule Catalysis on Modular Multilayer Nanocatalysts. Angewandte Chemie - International Edition, 2014, 53, 12865-12869.	13.8	24
34	Geometryâ€Assisted Threeâ€Dimensional Superlocalization Imaging of Singleâ€Molecule Catalysis on Modular Multilayer Nanocatalysts. Angewandte Chemie, 2014, 126, 13079-13083.	2.0	6