
Wen-Ten Kuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1685435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Incense Ash on the Engineering Properties of Cement-Based Composite Material. Applied Sciences (Switzerland), 2021, 11, 4186.	2.5	2
2	A Comprehensive Study of the Mechanical and Durability Properties of High-Performance Concrete Materials for Grouting Underwater Foundations of Offshore Wind Turbines. Materials, 2021, 14, 5968.	2.9	5
3	Effect of Burn Joss Paper Ash on Properties of Ground-Granulated Blast Furnace-Based Slag Geopolymer. Applied Sciences (Switzerland), 2020, 10, 4877.	2.5	3
4	Influence of BOF and GGBFS Based Alkali Activated Materials on the Properties of Porous Concrete. Materials, 2019, 12, 2214.	2.9	7
5	Bonding Behavior of Repair Material Using Fly-Ash/Ground Granulated Blast Furnace Slag-Based Geopolymer. Materials, 2019, 12, 1697.	2.9	16
6	Engineering Properties of Controlled Low-Strength Materials Containing Bottom Ash of Municipal Solid Waste Incinerator and Water Filter Silt. Applied Sciences (Switzerland), 2018, 8, 1377.	2.5	20
7	Properties of compressed concrete paving units made produced using desulfurization slag. Environmental Progress and Sustainable Energy, 2015, 34, 1365-1371.	2.3	4
8	Effect of particle size and curing temperature on expansion reaction in electric arc furnace oxidizing slag aggregate concrete. Construction and Building Materials, 2015, 94, 488-493.	7.2	21
9	Expansion behavior of concrete containing different steel slag aggregate sizes under heat curing. Computers and Concrete, 2015, 16, 487-502.	0.7	3
10	Expansion behavior of low-strength steel slag mortar during high-temperature catalysis. Computers and Concrete, 2015, 16, 261-274.	0.7	3
11	Electric arc furnace oxidizing slag mortar with volume stability for rapid detection. Construction and Building Materials, 2014, 53, 635-641.	7.2	21
12	Application of high-temperature rapid catalytic technology to forecast the volumetric stability behavior of containing steel slag mixtures. Construction and Building Materials, 2014, 50, 463-470.	7.2	27
13	Engineering properties of alkali-activated binders by use of desulfurization slag and GGBFS. Construction and Building Materials, 2014, 66, 229-234.	7.2	17
14	Engineering properties of cementless concrete produced from GGBFS and recycled desulfurization slag. Construction and Building Materials, 2014, 63, 189-196.	7.2	48
15	Prediction of ions migration behavior in mortar under 2-D ALMT application to inhibit ASR. Computers and Concrete, 2014, 14, 263-277.	0.7	3
16	Evaluation of the sulfate resistance of fly ash and slag concrete by using modified ACMT. Construction and Building Materials, 2013, 49, 40-45.	7.2	14
17	Study of the material properties of fly ash added to oyster cement mortar. Construction and Building Materials, 2013, 41, 532-537.	7.2	73
18	Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cement and Concrete Composites, 2013, 37, 328-335.	10.7	95

Wen-Ten Kuo

#	Article	IF	CITATIONS
19	Engineering properties of controlled low-strength materials containing waste oyster shells. Construction and Building Materials, 2013, 46, 128-133.	7.2	181
20	Characteristics of Compressed Concrete Paving Units Produced from Washed Municipal Solid Waste Incinerator Bottom Ash. Advanced Materials Research, 2013, 723, 588-593.	0.3	2
21	Equifield line simulation and ion migration prediction for concrete under 2-D electric field. Computers and Concrete, 2013, 12, 431-442.	0.7	1
22	Effect of Electric Field on Cation Migration and Electrode Reactions of Mortar with Different W/C Ratios. Advanced Materials Research, 0, 399-401, 1320-1325.	0.3	0
23	Cation Migration in Mortar with Different Volume Fractions of Aggregate Affected by Electric Field. Applied Mechanics and Materials, 0, 99-100, 711-714.	0.2	1
24	Applying Support Vector Machines in Rebound Hammer Test. Advanced Materials Research, 0, 853, 600-604.	0.3	3