Bin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1685143/publications.pdf

Version: 2024-02-01

		117571	102432
76	4,650 citations	34	66
papers	citations	h-index	g-index
7.0	7.0	7.0	7104
76	76	76	7194
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone repair. Acta Biomaterialia, 2022, 142, 85-98.	4.1	18
2	Reversible dougong structured receptor–ligand recognition for building dynamic extracellular matrix mimics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
3	Macrophage-Targeted Hydroxychloroquine Nanotherapeutics for Rheumatoid Arthritis Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 8824-8837.	4.0	28
4	A Multifunctional Composite Hydrogel That Rescues the ROS Microenvironment and Guides the Immune Response for Repair of Osteoporotic Bone Defects. Advanced Functional Materials, 2022, 32, .	7.8	41
5	Targeting Endogenous Hydrogen Peroxide at Bone Defects Promotes Bone Repair. Advanced Functional Materials, 2022, 32, .	7.8	41
6	Collagen Modified Anisotropic PLA Scaffold as a Base for Peripheral Nerve Regeneration. Macromolecular Bioscience, 2022, 22, e2200119.	2.1	9
7	Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomaterialia, 2022, 148, 73-89.	4.1	21
8	Multifunctional Nanofibrous Scaffolds with Angleâ€Ply Microstructure and Coâ€Delivery Capacity Promote Partial Repair and Total Replacement of Intervertebral Disc. Advanced Healthcare Materials, 2022, 11, .	3.9	7
9	Regulation of differentiation of annulus fibrosus-derived stem cells using heterogeneous electrospun fibrous scaffolds. Journal of Orthopaedic Translation, 2021, 26, 171-180.	1.9	20
10	Substrate Topography Regulates Differentiation of Annulus Fibrosus-Derived Stem Cells via CAV1-YAP-Mediated Mechanotransduction. ACS Biomaterials Science and Engineering, 2021, 7, 862-871.	2.6	14
11	Thermo-responsive imprinted hydrogel with switchable sialic acid recognition for selective cancer cell isolation from blood. Bioactive Materials, 2021, 6, 1308-1317.	8.6	39
12	Fatigue Crack Growth and Fracture of Internal Fixation Materials in In Vivo Environmentsâ€"A Review. Materials, 2021, 14, 176.	1.3	7
13	Calcium phosphate bone cement with enhanced physicochemical properties <i>via in situ</i> formation of an interpenetrating network. Journal of Materials Chemistry B, 2021, 9, 6802-6810.	2.9	13
14	Moderate mechanical stimulation rescues degenerative annulus fibrosus by suppressing caveolin-1 mediated pro-inflammatory signaling pathway. International Journal of Biological Sciences, 2021, 17, 1395-1412.	2.6	16
15	Mechanoâ€regulation of vascular network formation without branches in 3D bioprinted cellâ€laden hydrogel constructs. Biotechnology and Bioengineering, 2021, 118, 3787-3798.	1.7	11
16	Poly(ethylene glycol)-sheddable reduction-sensitive polyurethane micelles for triggered intracellular drug delivery for osteosarcoma treatment. Journal of Orthopaedic Translation, 2020, 21, 57-65.	1.9	16
17	3D biofabrication for soft tissue and cartilage engineering. Medical Engineering and Physics, 2020, 82, 13-39.	0.8	21
18	<p>Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes</p> . International Journal of Nanomedicine, 2020, Volume 15, 8583-8594.	3.3	20

#	Article	IF	Citations
19	Nanoscaled Bionic Periosteum Orchestrating the Osteogenic Microenvironment for Sequential Bone Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 36823-36836.	4.0	42
20	Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair. Acta Biomaterialia, 2020, 113, 317-327.	4.1	55
21	Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomaterialia, 2020, 112, 75-86.	4.1	23
22	Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Frontiers in Bioengineering and Biotechnology, 2020, 8, 83.	2.0	136
23	Carbon quantum dots derived from lysine and arginine simultaneously scavenge bacteria and promote tissue repair. Applied Materials Today, 2020, 19, 100601.	2.3	59
24	Effects of Matrix Stiffness on the Differentiation of Multipotent Stem Cells. Current Stem Cell Research and Therapy, 2020, 15, 449-461.	0.6	14
25	Stiffness of Aligned Fibers Regulates the Phenotypic Expression of Vascular Smooth Muscle Cells. ACS Applied Materials & Interfaces, 2019, 11, 6867-6880.	4.0	72
26	Degenerative musculoskeletal diseases: Pathology and treatments. Journal of Orthopaedic Translation, 2019, 17, 1-2.	1.9	6
27	Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering. Molecules, 2019, 24, 1633.	1.7	23
28	Surface degradation–enabled osseointegrative, angiogenic and antiinfective properties of magnesium-modified acrylic bone cement. Journal of Orthopaedic Translation, 2019, 17, 121-132.	1.9	23
29	Preparation of lysozyme-imprinted nanoparticles on polydopamine-modified titanium dioxide using ionic liquid as a stabilizer. RSC Advances, 2019, 9, 14974-14981.	1.7	14
30	Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Bloodâ€Vesselâ€onâ€aâ€Chip Applications. Advanced Healthcare Materials, 2019, 8, e1900435.	3.9	53
31	Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein. Acta Biomaterialia, 2019, 92, 254-264.	4.1	67
32	Polydopamine-assisted surface modification for orthopaedic implants. Journal of Orthopaedic Translation, 2019, 17, 82-95.	1.9	91
33	Multifunctional Coating to Simultaneously Encapsulate Drug and Prevent Infection of Radiopaque Agent. International Journal of Molecular Sciences, 2019, 20, 2055.	1.8	2
34	In situ silk fibroin-mediated crystal formation of octacalcium phosphate and its application in bone repair. Materials Science and Engineering C, 2019, 95, 1-10.	3.8	20
35	Interleukin- $\hat{\Pi}^2$ induces apoptosis in annulus fibrosus cells through the extracellular signal-regulated kinase pathway. Connective Tissue Research, 2018, 59, 593-600.	1.1	12
36	Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer. Nano Letters, 2018, 18, 2475-2484.	4.5	348

#	Article	IF	CITATIONS
37	Calcium Phosphate-Silk Fibroin Composites: Bone Cement and Beyond. Springer Series in Biomaterials Science and Engineering, 2018, , 449-472.	0.7	1
38	3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 2018, 3, 278-314.	8.6	866
39	Reinforcement of calcium phosphate cement using alkaline-treated silk fibroin. International Journal of Nanomedicine, 2018, Volume 13, 7183-7193.	3.3	13
40	Biomechanics in Annulus Fibrosus Degeneration and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1078, 409-420.	0.8	34
41	Identification and Characterizations of Annulus Fibrosus-Derived Stem Cells. Methods in Molecular Biology, 2018, 1842, 207-216.	0.4	9
42	Synergistic effects of titania nanotubes and silicon to enhance the osteogenic activity. Colloids and Surfaces B: Biointerfaces, 2018, 171, 419-426.	2.5	14
43	Strategies for Annulus Fibrosus Regeneration: From Biological Therapies to Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2018, 6, 90.	2.0	70
44	The "Magnesium Sacrifice―Strategy Enables PMMA Bone Cement Partial Biodegradability and Osseointegration Potential. International Journal of Molecular Sciences, 2018, 19, 1746.	1.8	18
45	Hierarchical Micro/Nanofibrous Bioscaffolds for Structural Tissue Regeneration. Advanced Healthcare Materials, 2017, 6, 1601457.	3.9	49
46	<i>In vitro</i> evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 257-270.	1.9	37
47	Controlled release of BMP-2 from a collagen-mimetic peptide-modified silk fibroin–nanohydroxyapatite scaffold for bone regeneration. Journal of Materials Chemistry B, 2017, 5, 8770-8779.	2.9	44
48	Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin–nanohydroxyapatite scaffold for vascularized bone regeneration. Journal of Materials Chemistry B, 2017, 5, 6963-6972.	2.9	79
49	Mussel-inspired deposition of copper on titanium for bacterial inhibition and enhanced osseointegration in a periprosthetic infection model. RSC Advances, 2017, 7, 51593-51604.	1.7	21
50	Hierarchical micro/submicrometer-scale structured scaffolds prepared <i>via</i> coaxial electrospinning for bone regeneration. Journal of Materials Chemistry B, 2017, 5, 9219-9228.	2.9	16
51	Antibacterial activity and osseointegration of silver-coated poly(ether ether ketone) prepared using the polydopamine-assisted deposition technique. Journal of Materials Chemistry B, 2017, 5, 9326-9336.	2.9	54
52	Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants. International Journal of Molecular Sciences, 2016, 17, 292.	1.8	49
53	Electrospun Poly(I-lactide)/Poly(ethylene glycol) Scaffolds Seeded with Human Amniotic Mesenchymal Stem Cells for Urethral Epithelium Repair. International Journal of Molecular Sciences, 2016, 17, 1262.	1.8	29
54	Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials, 2016, 106, 205-216.	5.7	211

#	Article	IF	Citations
55	Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2016, 143, 81-87.	2.5	85
56	Cellular modulation by the elasticity of biomaterials. Journal of Materials Chemistry B, 2016, 4, 9-26.	2.9	72
57	Modulation of the gene expression of annulus fibrosus-derived stem cells using poly(ether carbonate) Tj ETQq1 1	. 0.78431 <i>4</i>	4 rgBT /Overl
58	Effect of scaffold elasticity on the gene expression of annulus fibrosus-derived stem cells. Data in Brief, 2015, 5, 1007-1014.	0.5	2
59	Gene expression modulation in <scp>TGF</scp> â€Î²3â€mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness. Journal of Cellular and Molecular Medicine, 2015, 19, 1582-1592.	1.6	33
60	The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Research, 2015, 3, 15012.	5 . 4	82
61	Saccharides and temperature dual-responsive hydrogel layers for harvesting cell sheets. Chemical Communications, 2015, 51, 644-647.	2.2	51
62	N -Acetyl cysteine (NAC)-mediated reinforcement of alpha-tricalcium phosphate/silk fibroin (α-TCP/SF) cement. Colloids and Surfaces B: Biointerfaces, 2015, 136, 892-899.	2.5	11
63	Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: Current status and future developments. Journal of Orthopaedic Translation, 2015, 3, 1-11.	1.9	77
64	Regional Variations in the Cellular, Biochemical, and Biomechanical Characteristics of Rabbit Annulus Fibrosus. PLoS ONE, 2014, 9, e91799.	1.1	23
65	Electrospun nanofibrous scaffolds of poly (I-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Materials Science and Engineering C, 2014, 35, 426-433.	3.8	39
66	Dynamic Introduction of Cell Adhesive Factor via Reversible Multicovalent Phenylboronic Acid/ <i>cis</i> -Diol Polymeric Complexes. Journal of the American Chemical Society, 2014, 136, 6203-6206.	6.6	120
67	Mechanical reinforcement of injectable calcium phosphate cement/silk fibroin (SF) composite by mineralized SF. Ceramics International, 2014, 40, 13987-13993.	2.3	29
68	Identification of Rabbit Annulus Fibrosus-Derived Stem Cells. PLoS ONE, 2014, 9, e108239.	1.1	44
69	Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter, 2013, 9, 3840.	1.2	116
70	Thermoâ€Responsive Hydrogel Layers Imprinted with RGDS Peptide: A System for Harvesting Cell Sheets. Angewandte Chemie - International Edition, 2013, 52, 6907-6911.	7.2	130
71	Proliferation and differentiation of osteoblastic cells on titanium modified by ammonia plasma immersion ion implantation. Applied Surface Science, 2012, 258, 4322-4327.	3.1	16
72	Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. Journal of Tissue Viability, 2011, 20, 108-120.	0.9	387

#	Article	IF	CITATIONS
73	Application of Sensing Techniques to Cellular Force Measurement. Sensors, 2010, 10, 9948-9962.	2.1	21
74	Cell shape regulates collagen type I expression in human tendon fibroblasts. Cytoskeleton, 2008, 65, 332-341.	4.4	71
75	A novel functional assessment of the differentiation of micropatterned muscle cells. Journal of Biomechanics, 2008, 41, 3349-3353.	0.9	49
76	RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. Journal of Biomedical Materials Research - Part A, 2006, 79A, 989-998.	2.1	97