List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1684986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. Reactive and Functional Polymers, 2006, 66, 1206-1214.	2.0	355
2	Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Journal of Hazardous Materials, 2013, 263, 307-310.	6.5	200
3	Boron in seawater and methods for its separation — A review. Desalination, 2010, 261, 212-217.	4.0	176
4	Separation of fluoride from aqueous solution by electrodialysis: Effect of process parameters and other ionic species. Journal of Hazardous Materials, 2008, 153, 107-113.	6.5	172
5	Solvent-impregnated resins (SIRs) – Methods of preparation and their applications. Reactive and Functional Polymers, 2010, 70, 484-496.	2.0	157
6	Various applications of electrodeionization (EDI) method for water treatment—A short review. Desalination, 2014, 342, 16-22.	4.0	135
7	Boron removal from seawater: State-of-the-art review. Desalination, 2015, 356, 85-93.	4.0	124
8	Sorption of Cr(VI) from aqueous solution by Amberlite XAD-7 resin impregnated with Aliquat 336. Reactive and Functional Polymers, 2004, 60, 223-244.	2.0	118
9	Removal of boron from seawater by selective ion exchange resins. Reactive and Functional Polymers, 2007, 67, 1643-1650.	2.0	116
10	Boron removal from seawater using high rejection SWRO membranes $\hat{a} \in$ " impact of pH, feed concentration, pressure, and cross-flow velocity. Desalination, 2008, 227, 253-263.	4.0	114
11	Removal of Cr(VI) by solvent impregnated resins (SIR) containing aliquat 336. Reactive and Functional Polymers, 2003, 54, 103-115.	2.0	113
12	Removal and recovery of boron from geothermal wastewater by selective ion exchange resins. I. Laboratory tests. Reactive and Functional Polymers, 2004, 60, 163-170.	2.0	112
13	Recovery of Uranium from Phosphoric Acid Solutions Using Chelating Ion-Exchange Resinsâ€. Industrial & Engineering Chemistry Research, 1998, 37, 1983-1990.	1.8	105
14	Removal of Boron from Wastewater of Geothermal Power Plant by Selective Ion-Exchange Resins. I. Batch Sorption–Elution Studies. Separation Science and Technology, 1999, 34, 2553-2569.	1.3	93
15	Adsorption-membrane filtration (AMF) hybrid process for boron removal from seawater: an overview. Desalination, 2008, 223, 38-48.	4.0	93
16	Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED). Desalination, 2017, 416, 10-15.	4.0	92
17	Application of bipolar membrane electrodialysis (BMED) for simultaneous separation and recovery of boron and lithium from aqueous solutions. Desalination, 2017, 424, 37-44.	4.0	84
18	Removal and recovery of boron from geothermal wastewater by selective ion-exchange resins — II. Field tests, Desalination, 2004, 167, 427-438.	4.0	81

#	Article	IF	CITATIONS
19	Removal of Fluoride from Water by Metal Ions (Al ³⁺ , La ³⁺ and) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf 50
20	Pre-treatment with nanofiltration (NF) in seawater desalination—Preliminary integrated membrane tests in Urla, Turkey. Desalination, 2015, 369, 10-17.	4.0	80
21	Application of reverse osmosis for reuse of secondary treated urban wastewater in agricultural irrigation. Desalination, 2015, 364, 68-74.	4.0	80
22	Removal of calcium and magnesium hardness by electrodialysis. Desalination, 2002, 149, 343-349.	4.0	78
23	Application of nanofiltration for reuse of municipal wastewater and quality analysis of product water. Desalination, 2013, 315, 33-36.	4.0	74
24	Recovery of uranium from seawater. XII. Preparation and characterization of lightly crosslinked highly porous chelating resins containing amidoxime groups. Journal of Applied Polymer Science, 1992, 46, 129-142.	1.3	73
25	Removal of boron from water by electrodialysis: effect of feed characteristics and interfering ions. Desalination, 2008, 223, 63-72.	4.0	73
26	Removal of boron from seawater by adsorption–membrane hybrid process: implementation and challenges. Desalination, 2008, 223, 57-62.	4.0	72
27	Removal of boron from SWRO permeate by boron selective ion exchange resins containing N-methyl glucamine groups. Desalination, 2008, 223, 49-56.	4.0	70
28	Application of electrodeionization (EDI) for removal of boron and silica from reverse osmosis (RO) permeate of geothermal water. Desalination, 2013, 310, 25-33.	4.0	70
29	Removal of Boron from Wastewater of Geothermal Power Plant by Selective Ion-Exchange Resins. II. Column Sorption–Elution Studies. Separation Science and Technology, 1999, 34, 2981-2995.	1.3	68
30	Packed bed column dynamic study for boron removal from geothermal brine by a chelating fiber and breakthrough curve analysis by using mathematical models. Desalination, 2018, 437, 1-6.	4.0	68
31	Chelating Polymers for Recovery of Uranium from Seawaterâ^—. Separation Science and Technology, 1994, 29, 135-150.	1.3	67
32	Stabilization of solvent impregnated resins (SIRs) by coating with water soluble polymers and chemical crosslinking. Reactive and Functional Polymers, 2004, 59, 1-7.	2.0	67
33	Separation of monovalent and divalent ions from ternary mixtures by electrodialysis. Desalination, 2006, 198, 74-83.	4.0	66
34	A submerged membrane–ion-exchange hybrid process for boron removal. Desalination, 2006, 198, 310-315.	4.0	65
35	Preparation of fibrous adsorbents containing amidoxime groups by radiation-induced grafting and application to uranium recovery from sea water. Journal of Applied Polymer Science, 1993, 49, 599-607.	1.3	64
36	Performances of novel chelating ion exchange resins for boron and arsenic removal from saline geothermal water using adsorption-membrane filtration hybrid process. Desalination, 2020, 491, 114504.	4.0	64

#	Article	IF	CITATIONS
37	Removal of boron from Balcova geothermal water by ion exchange–microfiltration hybrid process. Desalination, 2009, 241, 167-173.	4.0	63
38	Integrated solution for boron removal from seawater using RO process and sorption-membrane filtration hybrid method. Journal of Membrane Science, 2011, 375, 249-257.	4.1	60
39	Removal of Cu2+ ions by a micro-flow electrodeionization (EDI) system. Desalination, 2011, 277, 296-300.	4.0	57
40	Removal of boron from aqueous solutions by a hybrid ion exchange–membrane process. Desalination, 2006, 198, 158-165.	4.0	54
41	Removal of Metal Pollutants (Cd(II) and Cr(III)) from Phosphoric Acid Solutions by Chelating Resins Containing Phosphonic or Diphosphonic Groupsâ€. Industrial & Engineering Chemistry Research, 1998, 37, 2541-2547.	1.8	53
42	Demineralization by electrodialysis (ED) $\hat{a} \in$ " separation performance and cost comparison for monovalent salts. Desalination, 2003, 153, 329-333.	4.0	52
43	Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl- d -glucamine groups. Chemical Engineering Journal, 2016, 284, 395-404.	6.6	52
44	Effect of acid-base solutions used in acid-base compartments for simultaneous recovery of lithium and boron from aqueous solution using bipolar membrane electrodialysis (BMED). Desalination, 2018, 448, 69-75.	4.0	51
45	Kinetic Behavior of Lightly Crosslinked Chelating Resins Containing Amidoxime Groups for Batchwise Adsorption of UO ₂ ²⁺ . Separation Science and Technology, 1993, 28, 1985-1993.	1.3	50
46	Cost comparison and efficiency modeling in the electrodialysis of brine. Desalination, 2001, 136, 317-323.	4.0	50
47	Application of heterogeneous ion exchange membranes for simultaneous separation and recovery of lithium and boron from aqueous solution with bipolar membrane electrodialysis (EDBM). Desalination, 2020, 479, 114313.	4.0	50
48	Effect of feed characteristics on the separation performances of monovalent and divalent salts by electrodialysis. Desalination, 2003, 158, 95-100.	4.0	49
49	The effects of operating conditions on boron removal from geothermal waters by membrane processes. Desalination, 2010, 258, 72-78.	4.0	47
50	Utilization of renewable energy sources in desalination of geothermal water for agriculture. Desalination, 2021, 513, 115151.	4.0	46
51	The removal of boron from model solutions and seawater using reverse osmosis membranes. Desalination, 2008, 223, 126-133.	4.0	45
52	A comparative study for the removal of boron and silica from geothermal water by cross-flow flat sheet reverse osmosis method. Desalination, 2011, 283, 10-15.	4.0	44
53	A comparative study for boron removal from seawater by two types of polyamide thin film composite SWRO membranes. Desalination, 2011, 273, 81-84.	4.0	39
54	Modeling of fixed bed column studies for removal of boron from geothermal water by selective chelating ion exchange resins. Desalination, 2013, 310, 151-157.	4.0	39

#	Article	IF	CITATIONS
55	Evaluation of MBR treated industrial wastewater quality before and after desalination by NF and RO processes for agricultural reuse. Journal of Water Process Engineering, 2018, 22, 103-108.	2.6	38
56	An innovative integrated system for boron removal from geothermal water using RO process and ion exchange-ultrafiltration hybrid method. Desalination, 2013, 316, 1-7.	4.0	37
57	Effect of salt combination on separation of monovalent and divalent salts by electrodialysis. Desalination, 2006, 198, 84-91.	4.0	36
58	Polymeric microspheres with N-methyl-d-glucamine ligands for boron removal from water solution by adsorption–membrane filtration process. Environmental Geochemistry and Health, 2010, 32, 349-352.	1.8	36
59	Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water. Journal of Hazardous Materials, 2021, 405, 124129.	6.5	36
60	Removal of boron from geothermal water by a novel boron selective resin. Desalination, 2013, 310, 102-108.	4.0	35
61	Preparation of Amidoxime-Fiber Adsorbents Based on Poly(Methacrylonitrile) for Recovery of Uranium from Seawaterâ^—. Separation Science and Technology, 1994, 29, 375-384.	1.3	34
62	Application of adsorption–ultrafiltration hybrid method for removal of phenol from water by hypercrosslinked polymer adsorbents. Desalination, 2012, 306, 24-28.	4.0	33
63	Amberlite IRA-400 and IRA-743 chelating resins for the sorption and recovery of molybdenum(VI) and vanadium(V): Equilibrium and kinetic studies. Hydrometallurgy, 2017, 169, 496-507.	1.8	33
64	Removal of Boron and Arsenic from Geothermal Water in Kyushu Island, Japan, by Using Selective Ion Exchange Resins. Solvent Extraction and Ion Exchange, 2011, 29, 440-457.	0.8	32
65	Monodisperseâ€porous <i>N</i> â€methylâ€ <scp>D</scp> â€glucamine functionalized poly(vinylbenzyl) Tj ETQq1 Science, 2012, 126, 1475-1483.	1 0.7843 1.3	14 rgBT /0 32
66	Coupling ion exchange with ultrafiltration for boron removal from geothermal water-investigation of process parameters and recycle tests. Desalination, 2013, 316, 17-22.	4.0	31
67	Separation of Low Concentration of Fluoride from Water by Electrodialysis (ED) in the Presence of Chloride and Sulfate Ions. Separation Science and Technology, 2009, 44, 1562-1573.	1.3	30
68	Utilization of geothermal water as irrigation water after boron removal by monodisperse nanoporous polymers containing NMDG in sorption–ultrafiltration hybrid process. Desalination, 2015, 364, 62-67.	4.0	30
69	Equilibrium and Kinetic Studies on Lithium Adsorption from Geothermal Water by λ-MnO ₂ . Solvent Extraction and Ion Exchange, 2017, 35, 221-231.	0.8	30
70	Performance comparison of reverse osmosis (RO) with integrated nanofiltration (NF) and reverse osmosis process for desalination of MBR effluent. Journal of Water Process Engineering, 2019, 29, 100640.	2.6	30
71	Amidoxime resins based on poly(acrylonitrile-co-vinylidene chloride-co-divinylbenzene) and their behavior in uptake of uranium from sea water. Journal of Applied Polymer Science, 1994, 54, 333-338.	1.3	29
72	Removal of Metal Ions from Aqueous Solution by Cellulose Ion Exchangers. Separation Science and Technology, 1999, 34, 41-51.	1.3	29

#	Article	IF	CITATIONS
73	Removal of Nitrate from Ground Water by a Hybrid Process Combining Electrodialysis and Ion Exchange Processes. Separation Science and Technology, 2007, 42, 2615-2627.	1.3	29
74	REMOVAL OF BORON FROM BALÇOVA-IZMIR GEOTHERMAL WATER BY ION EXCHANGE PROCESS: BATCH AND COLUMN STUDIES. Chemical Engineering Communications, 2008, 196, 277-289.	1.5	29
75	Removal of boron from geothermal water by RO system-II-effect of pH. Desalination, 2013, 310, 135-139.	4.0	29
76	Demineralization of geothermal water reverse osmosis (RO) permeate by electrodeionization (EDI) with mixed bed configuration. Desalination, 2014, 342, 23-28.	4.0	29
77	Comparison of two electrodialysis stacks having different ion exchange and bipolar membranes for simultaneous separation of boron and lithium from aqueous solution. Desalination, 2021, 500, 114850.	4.0	29
78	Adsorption-membrane filtration process in boron removal from first stage seawater RO permeate. Desalination, 2009, 241, 127-132.	4.0	28
79	Boron Removal from Geothermal Water by a Novel Monodisperse Porous Poly(GMA- <i>co</i> -EDM) Resin Containing <i>N</i> -Methyl-D-Glucamine Functional Group. Solvent Extraction and Ion Exchange, 2012, 30, 341-349.	0.8	28
80	Packed column study of the sorption of hexavalent chromium by novel solvent impregnated resins containing aliquat 336: Effect of chloride and sulfate ions. Reactive and Functional Polymers, 2005, 64, 75-82.	2.0	27
81	Comparative boron removal performance of monodisperse-porous particles with molecular brushes via "click chemistry―and direct coupling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 372, 102-106.	2.3	27
82	Demineralization of geothermal water reverse osmosis (RO) permeate by electrodeionization (EDI) with layered bed configuration. Desalination, 2013, 317, 48-54.	4.0	27
83	Effect of Ionic Strength of Solution on Boron Mass Transfer by Ion Exchange Separation. Separation Science and Technology, 2007, 42, 1013-1029.	1.3	26
84	Removal of Fluoride from Geothermal Water by Electrodialysis (ED). Separation Science and Technology, 2009, 44, 841-853.	1.3	26
85	Effect of temperature on seawater desalination-water quality analyses for desalinated seawater for its use as drinking and irrigation water. Environmental Geochemistry and Health, 2010, 32, 335-339.	1.8	25
86	A comparative study of removal of Cr(<scp>VI</scp>) by ion exchange resins bearing quaternary ammonium groups. Journal of Chemical Technology and Biotechnology, 2014, 89, 851-857.	1.6	25
87	Separation of Boron from Geothermal Water Using a Boron Selective Macroporous Weak Base Anion Exchange Resin. Separation Science and Technology, 2010, 45, 809-813.	1.3	24
88	Boron removal from RO permeate of geothermal water by monodisperse poly(vinylbenzyl) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T 4.0	f 50 142 Td
89	Removal of boron from geothermal water by RO system-l—Effect of membrane configuration and applied pressure. Desalination, 2013, 310, 130-134.	4.0	23

90Performances of some NF and RO membranes for desalination of MBR treated wastewater. Journal of
Water Process Engineering, 2017, 16, 193-198.2.623

#	Article	IF	CITATIONS
91	Effect of operational conditions on post-treatment of RO permeate of geothermal water by using electrodeionization (EDI) method. Desalination, 2018, 431, 100-105.	4.0	23
92	Reactivity of inorganic anion exchanger BiPbO2(NO3) with fluoride ions in solution. Solid State Ionics, 2001, 141-142, 603-607.	1.3	22
93	A comparative study of removal of endocrine disrupting compounds (<scp>EDCs</scp>) from treated wastewater using highly crosslinked polymeric adsorbents and activated carbon. Journal of Chemical Technology and Biotechnology, 2014, 89, 819-824.	1.6	22
94	Integration of MBR with NF/RO processes for industrial wastewater reclamation and water reuse-effect of membrane type on product water quality. Journal of Water Process Engineering, 2019, 29, 100574.	2.6	22
95	Preparation of amidoxime-fiber adsorbents by radiation-induced grafting. Radiation Physics and Chemistry, 1995, 46, 833-836.	1.4	21
96	Removal of chromate by solvent impregnated resins (SIRs) stabilized by coating and chemical crosslinking. I. Batch-mode sorption studies. Reactive and Functional Polymers, 2004, 59, 9-14.	2.0	21
97	Comparison of several polymeric sorbents for selective boron removal from reverse osmosis permeate. Reactive and Functional Polymers, 2007, 67, 1622-1627.	2.0	21
98	Kinetic behaviour of boron selective resins for boron removal using seeded microfiltration system. Reactive and Functional Polymers, 2007, 67, 1628-1634.	2.0	21
99	ELECTRO-DEIONIZATION OF Cr (VI)-CONTAINING SOLUTION. PART II: CHROMIUM TRANSPORT THROUGH INORGANIC ION-EXCHANGER AND COMPOSITE CERAMIC MEMBRANE. Chemical Engineering Communications, 2008, 196, 22-38.	1.5	21
100	A hydrophilic matrix for boron isolation: Monodisperse-porous poly(glycidyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Functional Polymers, 2010, 70, 555-562.	387 Td (r 2.0	methacrylate 21
101	Boron removal by liquidâ€phase polymerâ€based retention technique using poly(glycidyl methacrylate) Tj ETQq1	1.0,78431 1.3	I4.rgBT /Ove
102	Investigation of mini pilot scale MBR-NF and MBR-RO integrated systems performance—Preliminary field tests. Journal of Water Process Engineering, 2016, 12, 72-77.	2.6	21
103	Deboronation of geothermal water using N-methyl-D-glucamine based chelating resins and a novel fiber adsorbent: batch and column studies. Journal of Chemical Technology and Biotechnology, 2017, 92, 1540-1547.	1.6	21
104	ELECTRO-DEIONIZATION OF Cr (VI)-CONTAINING SOLUTION. PART I: CHROMIUM TRANSPORT THROUGH GRANULATED INORGANIC ION-EXCHANGER. Chemical Engineering Communications, 2008, 196, 3-21.	1.5	20
105	Removal of arsenic from water by combination of electroâ€oxidation and polymer enhanced ultrafiltration. Environmental Progress and Sustainable Energy, 2014, 33, 918-924.	1.3	20
106	Kinetic analysis of methane production from anaerobic digestion of water lettuce (<scp><i>Pistia) Tj ETQq0 0 0 rg 2019, 94, 1893-1903.</i></scp>	gBT /Overl 1.6	ock 10 Tf 50 20
107	Removal of cadmium from phosphoric acid solution by solvent-impregnated resins (sirs) - sorption kinetics and equilibria studies. Chemical Engineering Communications, 2003, 190, 936-947.	1.5	19
108	Donnan dialysis of borate anions through anion exchange membranes: A new method for regeneration	2.0	19

of boron selective resins. Reactive and Functional Polymers, 2007, 67, 1635-1642. 108

#	Article	IF	CITATIONS
109	Concentrate reduction in NF and RO desalination systems by membrane-in-series configurations-evaluation of product water for reuse in irrigation. Desalination, 2019, 466, 89-96.	4.0	18
110	Removal of chromate by solvent impregnated resins (SIRs) stabilized by coating and chemical crosslinking. II. Column-mode sorption/elution studies. Reactive and Functional Polymers, 2004, 59, 15-22.	2.0	17
111	Removal of boron from water through soluble polymer based on N-methyl-D-glucamine and regenerated-cellulose membrane. Desalination and Water Treatment, 2016, 57, 861-869.	1.0	16
112	Elimination of boron and lithium coexisting in geothermal water by adsorption-membrane filtration hybrid process. Separation Science and Technology, 2018, 53, 856-862.	1.3	16
113	Effect of pressure on desalination of MBR effluents with high salinity by using NF and RO processes for reuse in irrigation. Journal of Water Process Engineering, 2018, 25, 22-27.	2.6	16
114	Biodiesel production using gel-type cation exchange resin at different ionic forms. International Journal of Energy Research, 2019, 43, 2188-2199.	2.2	14
115	Performance of Reverse Electrodialysis System for Salinity Gradient Energy Generation by Using a Commercial Ion Exchange Membrane Pair with Homogeneous Bulk Structure. Water (Switzerland), 2021, 13, 814.	1.2	14
116	Principles of reverse electrodialysis and development of integrated-based system for power generation and water treatment: a review. Reviews in Chemical Engineering, 2022, 38, 921-958.	2.3	14
117	ION EXCHANGE PROPERTIES OF BiO(NO3) 0.5H2O TOWARDS FLUORIDE IONS. Solvent Extraction and Ion Exchange, 2000, 18, 583-603.	0.8	13
118	Removal of Cr(VI) by a chelating resin containing N-methyl-d-glucamine. Polymer Bulletin, 2014, 71, 1813-1825.	1.7	13
119	Waterâ€soluble polymer and photocatalysis for arsenic removal. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
120	Concentrate management for integrated MBR-RO process for wastewater reclamation and reuse-preliminary tests. Journal of Water Process Engineering, 2019, 29, 100455.	2.6	13
121	CR(III) removal by macroreticular chelating ion exchange resins. Chemical Engineering Communications, 2003, 190, 813-822.	1.5	12
122	Investigation of Selectivity and Kinetic Behavior of Strongâ€Base Ion Exchange Resin Purolite A 520E for Nitrate Removal from Aqueous Solution. Separation Science and Technology, 2006, 41, 2973-2988.	1.3	12
123	Influence of the chosen process parameters on the efficiency of seawater desalination: SWRO pilot plant results at Urla Bay seashore. Desalination and Water Treatment, 2009, 5, 167-171.	1.0	12
124	Non-equilibrium sorption modeling for boron removal from geothermal water using sorption–microfiltration hybrid method. Chemical Engineering and Processing: Process Intensification, 2011, 50, 599-607.	1.8	12
125	Removal of As(V) using liquid-phase polymer-based retention (LPR) technique with regenerated cellulose membrane as a filter. Polymer Bulletin, 2013, 70, 2633-2644.	1.7	12
126	Removal of boron from geothermal water by RO System-III-Utilization of SWRO system. Desalination, 2013, 310, 140-144.	4.0	12

#	Article	IF	CITATIONS
127	Preparation and characterization of amidoxime resins based on poly(acrylonitrile-co-vinylidene) Tj ETQq1 1 0.7843	314.rgBT 1.3	/Oyerlock IC
128	Effect of Operational Conditions on Separation of Lithium from Geothermal Water by λ-MnO ₂ Using Ion Exchange–Membrane Filtration Hybrid Process. Solvent Extraction and Ion Exchange, 2018, 36, 499-512.	0.8	11
129	Desalination of geothermal wastewaters by membrane processes: Strategies for environmentally friendly use of retentate streams. Desalination, 2021, 520, 115330.	4.0	11
130	Effect of Process Parameters on Separation Performance of Nitrate by Electrodialysis. Separation Science and Technology, 2006, 41, 3201-3211.	1.3	10
131	Investigation of process parameters forÂremoval of bisphenol A (<scp>BPA</scp>) from water byÂpolymeric adsorbents inÂadsorptionâ€ultrafiltration hybrid system. Journal of Chemical Technology and Biotechnology, 2014, 89, 835-840.	1.6	9
132	Ultrafiltration assisted by water-soluble poly(diallyl dimethyl ammonium chloride) for As(V) removal. Polymer Bulletin, 2016, 73, 241-254.	1.7	9
133	Integrated pressure-driven membrane separation processes for the production of agricultural irrigation water from spent geothermal water. Desalination, 2022, 523, 115428.	4.0	9
134	Groundwater arsenic: From genesis to sustainable remediation. Water Research, 2010, 44, 5511.	5.3	8
135	Removal of Cr(VI) from aqueous solution by a highly efficient chelating resin. Polymer Bulletin, 2017, 74, 2033-2044.	1.7	8
136	Effect of concentrate recirculation on the product water quality of integrated MBR – NF process for wastewater reclamation and industrial reuse. Journal of Water Process Engineering, 2019, 29, 100485.	2.6	8
137	ARSENIC SORPTION USING MIXTURES OF ION EXCHANGE RESINS CONTAINING N-METHYL-D-GLUCAMINE AND QUATERNARY AMMONIUM GROUPS. Journal of the Chilean Chemical Society, 2016, 61, 2752-2756.	0.5	7
138	Utilization of reverse osmosis (RO) for reuse of MBR-treated wastewater in irrigation-preliminary tests and quality analysis of product water. Environmental Science and Pollution Research, 2018, 25, 3030-3037.	2.7	7
139	Synthetic strong base anion exchange resins: synthesis and sorption of Mo(VI) and V(V). Polymer Bulletin, 2018, 75, 729-746.	1.7	7
140	Reclamation of RO permeate and concentrate of geothermal water by new chelating resins having N-methyl-D-glucamine ligands. Separation and Purification Technology, 2021, 254, 117558.	3.9	7
141	The impacts of operational conditions on phenol removal by nanofiltration membranes. Desalination and Water Treatment, 2011, 26, 118-123.	1.0	6
142	Polypropylene membranes modified with interpenetrating polymer networks for the removal of chromium ions. Journal of Applied Polymer Science, 2015, 132, .	1.3	6
143	Assessment of Microbial and Ecotoxicological Qualities of Industrial Wastewater Treated with Membrane Bioreactor (MBR) Process for Agricultural Irrigation. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	6
144	Application of nanofiltration for reuse of wastewater. International Journal of Global Warming, 2014, 6, 325.	0.2	5

9

#	Article	IF	CITATIONS
145	Boron Removal From Seawater Using Reverse Osmosis Integrated Processes. , 2015, , 219-235.		5
146	<i>110th Anniversary:</i> Transesterification of Corn Oil to Biodiesel by Ion Exchange Resins with Macroporous Structure. Industrial & Engineering Chemistry Research, 2019, 58, 18097-18106.	1.8	5
147	Utilization of membrane separation processes for reclamation and reuse of geothermal water in agricultural irrigation of tomato plants-pilot membrane tests and economic analysis. Desalination, 2022, 528, 115608.	4.0	5
148	Use of Weak-Acid Cation-Exchange Resins Purolite C105 (H+) and Purolite C106 (H+) for the Adsorption of UO2+2. Separation Science and Technology, 1994, 29, 679-683.	1.3	4
149	Waterâ€insoluble copolymer based on <i>N</i> â€methylâ€ <scp>d</scp> â€glucamine and quaternary ammonium groups with capability to remove arsenic. Environmental Progress and Sustainable Energy, 2014, 33, 1187-1193.	1.3	4
150	Water Treatment by Electromembrane Processes. , 2016, , 181-214.		4
151	Surface-Activated Chelating Resins Containing N-Methyl-D-Glucamine Functional Groups for Desalination of Geothermal Water Aimed for Removal of Boron and Arsenic. Solvent Extraction and Ion Exchange, 2021, 39, 584-603.	0.8	4
152	Production of biodiesel from safflower plant cultivated using membrane bioreactor (MBR) effluent discharged from wastewater treatment plant. Journal of Chemical Technology and Biotechnology, 2020, 95, 527-534.	1.6	3
153	Use of geothermal fluid for agricultural irrigation: preliminary studies in Balçova- Narlıdere Geothermal Field (Turkey). Turkish Journal of Earth Sciences, 2021, 30, 1186-1199.	0.4	3
154	Removal of boron and arsenic from geothermal water by ion-exchange. , 2018, , 135-155.		3
155	Concept for energy harvesting from the salinity gradient on the basis of geothermal water. WEENTECH Proceedings in Energy, 2018, 4, 88-96.	0.0	3
156	Boron Removal From Geothermal WaterÂUsing Membrane Processes. , 2015, , 267-283.		2
157	Brine minimization in desalination of the geothermal reinjection fluid by pressure-driven membrane separation processes. Desalination, 2022, 535, 115840.	4.0	2
158	Hybrid Adsorption–Microfiltration Process with Plug Flow of Microparticulate Adsorbent for Boron Removal. , 2015, , 339-354.		1
159	Boron Removal From Water by Sorption–Membrane Filtration HybridÂProcess. , 2015, , 237-248.		1
160	Treatment of geothermal waters for industrial and agricultural purposes. , 2018, , 113-133.		1
161	Preface. Environmental Geochemistry and Health, 2010, 32, 259-260.	1.8	0
162	Application of Reverse Osmosis (RO) and Nanofiltration (NF) Processes for Desalination and Reuse of Membrane Bioreactor (MBR) Effluent as Irrigation and Process Water. Materials and Energy, 2021, , 81-127.	2.5	0

#	Article	IF	CITATIONS
163	Anaerobic Digestion of Aquatic Plants for Biogas Production. Green Energy and Technology, 2020, , 229-245.	0.4	0
164	Current status of ion exchange membranes for electrodialysis/reverse electrodialysis and membrane		0

164 capacitive deionization/capacitive mixing. , 2022, , 575-602.