Paulo José Da Venda Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1684608/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behaviour of sand stabilised with xanthan gum under unconfined and confined conditions. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2023, 176, 3-13.	1.0	6
2	Numerical Simulation of a Tunnel Built in London Clay Using the MIT-E3 Model. International Journal of Geomechanics, 2022, 22, .	2.7	1
3	Effect of Cyclic Loading Frequency on the Behavior of a Stabilized Sand Reinforced with Polypropylene and Sisal Fibers. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	5
4	Trends and Prospects in Geotechnics. Applied Sciences (Switzerland), 2022, 12, 3347.	2.5	0
5	Effect of initial stiffness on the behaviour of two geotechnical structures: An embankment and a tunnel. Computers and Geotechnics, 2021, 136, 104181.	4.7	2
6	Soil-Cement Mixtures Reinforced with Fibers: A Data-Driven Approach for Mechanical Properties Prediction. Applied Sciences (Switzerland), 2021, 11, 8099.	2.5	6
7	Comportamento de solos estabilizados quimicamente e reforçados com fibras sob ações monotónicas e cÃclicas. Geotecnia, 2021, , 509-529.	0.1	1
8	Reducing Soil Permeability Using Bacteria-Produced Biopolymer. Applied Sciences (Switzerland), 2021, 11, 7278.	2.5	4
9	A Review on the Importance of Microbial Biopolymers Such as Xanthan Gum to Improve Soil Properties. Applied Sciences (Switzerland), 2021, 11, 170.	2.5	25
10	Confined and unconfined behavior of a silty sand improved by the enzymatic biocementation method. Transportation Geotechnics, 2020, 24, 100400.	4.5	7
11	Effect of the soil type on the biocementation process by enzymatic way. E3S Web of Conferences, 2020, 195, 05008.	0.5	1
12	Strength assessment of chemically stabilised soft soils. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2019, 172, 218-227.	1.6	11
13	Numerical prediction of the creep behaviour of an embankment built on soft soils subjected to preloading. Computers and Geotechnics, 2019, 114, 103140.	4.7	16
14	Effect of Organic Matter Content on Enzymatic Biocementation Process Applied to Coarse-Grained Soils. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	25
15	Data mining approach for unconfined compression strength prediction of laboratory soil cement mixtures. Geotecnia, 2019, 145, 3-16.	0.1	0
16	Abordagem data mining para a previsão da resistência à compressão uniaxial de misturas laboratoriais de solo-cimento. Geotecnia, 2019, , 03-16.	0.1	0
17	Improvement of a sandy soil by enzymatic calcium carbonate precipitation. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2018, 171, 3-15.	1.6	46
18	Effect of the type of soil on the cyclic behaviour of chemically stabilised soils unreinforced and reinforced with polypropylene fibres. Soil Dynamics and Earthquake Engineering, 2018, 115, 336-343.	3.8	17

#	Article	IF	CITATIONS
19	Effect of organic matter in soft soils on the effectiveness of preloading for foundations. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2017, 170, 305-311.	1.6	6
20	Numerical prediction of the creep behaviour of an unstabilised and a chemically stabilised soft soil. Computers and Geotechnics, 2017, 87, 20-31.	4.7	14
21	Strength of a stabilised soil reinforced with steel fibres. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2017, 170, 312-321.	1.6	14
22	Numerical modelling of the effect of curing time on the creep behaviour of a chemically stabilised soft soil. Computers and Geotechnics, 2017, 91, 117-130.	4.7	5
23	Effect of Soil Type on the Enzymatic Calcium Carbonate Precipitation Process Used for Soil Improvement. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	68
24	Effect of cyclic loading on the behaviour of a chemically stabilised soft soil reinforced with steel fibres. Soil Dynamics and Earthquake Engineering, 2017, 92, 122-125.	3.8	7
25	Biocimentação de um solo arenoso com recurso a enzimas: efeito de diversos fatores. Geotecnia, 2017, , 03-18.	0.1	0
26	A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures. Procedia Engineering, 2016, 143, 566-573.	1.2	17
27	Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynthetics International, 2016, 23, 171-182.	2.9	31
28	Biostabilization of a Sandy Soil Using Enzymatic Calcium Carbonate Precipitation. Procedia Engineering, 2016, 143, 1301-1308.	1.2	53
29	Applicability of molding procedures in laboratory mix tests for quality control and assurance of the deep mixing method. Soils and Foundations, 2015, 55, 761-777.	3.1	33
30	Numeric modelling of vertical drains: two- and three-dimensional analyses. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2015, 168, 144-156.	1.0	4
31	Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotextiles and Geomembranes, 2015, 43, 97-106.	4.6	153
32	Comparison of the Ability of Two Bacteria to Improve the Behavior of Sandy Soil. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	36
33	Experimental Study of Isotropic and Anisotropic Constitutive Models. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, .	3.0	4
34	Stiffness parameters of municipal solid waste. Bulletin of Engineering Geology and the Environment, 2014, 73, 1073-1087.	3.5	12
35	Effect of Organic Matter Content and Binder Quantity on the Uniaxial Creep Behavior of an Artificially Stabilized Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, .	3.0	17
36	Municipal solid waste shear strength parameters defined through laboratorial and in situ tests. Journal of the Air and Waste Management Association, 2013, 63, 1352-1368.	1.9	25

Paulo José Da Venda Olivei

#	Article	IF	CITATIONS
37	Effect of Stress Level and Binder Composition on Secondary Compression of an Artificially Stabilized Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 810-820.	3.0	26
38	Mitigation of creep deformations by preloading: laboratory study. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2013, 166, 594-600.	1.6	10
39	A formula to predict the effect of the variable discharge capacity of prefabricated vertical drains. Geosynthetics International, 2013, 20, 408-420.	2.9	6
40	Effect of Organic Matter Content and Curing Conditions on the Creep Behavior of an Artificially Stabilized Soil. Journal of Materials in Civil Engineering, 2012, 24, 868-875.	2.9	36
41	Compressibility Characteristics of a Soft Soil Stabilized by Deep Mixing - Volumetric Creep Deformations. , 2012, , .		0
42	Parametric Study of an Embankment Built on Soft Soil Reinforced with Deep Mixing Columns. , 2012, , .		0
43	Numerical analysis of an embankment built on soft soil reinforced with deep mixing columns: Parametric study. Computers and Geotechnics, 2011, 38, 566-576.	4.7	63
44	Numerical analysis of an embankment on soft soils considering large displacements. Computers and Geotechnics, 2011, 38, 88-93.	4.7	13
45	Numerical predictions of the behaviour of soft clay with two anisotropic elastoplastic models. Computers and Geotechnics, 2011, 38, 598-611.	4.7	9
46	Behavior of an Atypical Embankment on Soft Soil: Field Observations and Numerical Simulation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 35-47.	3.0	31
47	Time-Dependent Behaviour of a Shallow Tunnel in Overconsolidated Clay. Soils and Rocks, 2010, 33, 159-170.	0.5	2