
Thierry Galli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1684051/publications.pdf Version: 2024-02-01

THIEDDY CALL

#	Article	IF	CITATIONS
1	SNAREs: Membrane Fusion and Beyond. , 2022, , .		1
2	A Phosphosite Mutant Approach on LRRK2 Links Phosphorylation and Dephosphorylation to Protective and Deleterious Markers, Respectively. Cells, 2022, 11, 1018.	1.8	4
3	Contributions of Andrée Tixierâ€Vidal (1923–2021) to modern cell biology. Biology of the Cell, 2022, , .	0.7	0
4	ER-PM Contact Sites – SNARING Actors in Emerging Functions. Frontiers in Cell and Developmental Biology, 2021, 9, 635518.	1.8	7
5	Introducing secretory reticulophagy/ER-phagy (SERP), a VAMP7-dependent pathway involved in neurite growth. Autophagy, 2021, 17, 1037-1039.	4.3	11
6	MICAL-L1 is required for cargo protein delivery to the cell surface. Biology Open, 2021, 10, .	0.6	3
7	Protocol to study starvation-induced autophagy in developing rat neurons. STAR Protocols, 2021, 2, 100713.	0.5	3
8	Role of the Sec22b–E-Syt complex in neurite growth and ramification. Journal of Cell Science, 2020, 133, .	1.2	26
9	SNAP iN, SNAP oUT—SNAREs at ER-PM Contact Sites. Contact (Thousand Oaks (Ventura County, Calif)), 2020, 3, 251525642097958.	0.4	1
10	Role of VAMP7-Dependent Secretion of Reticulon 3 in Neurite Growth. Cell Reports, 2020, 33, 108536.	2.9	28
11	Post-synaptic Release of the Neuronal Tissue-Type Plasminogen Activator (tPA). Frontiers in Cellular Neuroscience, 2019, 13, 164.	1.8	12
12	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chemical Biology, 2019, 26, 600-614.e7.	2.5	128
13	Downregulation of Membrane Trafficking Proteins and Lactate Conditioning Determine Loss of Dendritic Cell Function in Lung Cancer. Cancer Research, 2018, 78, 1685-1699.	0.4	72
14	Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. Journal of Experimental Medicine, 2018, 215, 1245-1265.	4.2	42
15	Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues. Journal of the American Chemical Society, 2018, 140, 5401-5411.	6.6	294
16	A new actin-binding domain glues autophagy together. Journal of Biological Chemistry, 2018, 293, 4575-4576.	1.6	16
17	ARAP1 Bridges Actin Dynamics and AP-3-Dependent Membrane Traffic in Bone-Digesting Osteoclasts. IScience, 2018, 6, 199-211.	1.9	12
18	Biomechanical Control of Lysosomal Secretion Via the VAMP7 Hub: A Tug-of-War between VARP and LRRK1. IScience, 2018, 4, 127-143.	1.9	22

#	Article	IF	CITATIONS
19	Reciprocal link between cell biomechanics and exocytosis. Traffic, 2018, 19, 741-749.	1.3	29
20	Comparative study of commercially available and homemade anti-VAMP7 antibodies using CRISPR/Cas9-depleted HeLa cells and VAMP7 knockout mice. F1000Research, 2018, 7, 1649.	0.8	2
21	VAMP1/2/3/7., 2018, , 5873-5883.		Ο
22	Comparative study of commercially available and homemade anti-VAMP7 antibodies using CRISPR/Cas9-depleted HeLa cells and VAMP7 knockout mice. F1000Research, 2018, 7, 1649.	0.8	3
23	Spastin regulates VAMP7-containing vesicles trafficking in cortical neurons. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1666-1677.	1.8	12
24	Soluble <i>N</i> -ethylmaleimide-sensitive factor attachment protein receptors required during <i>Trypanosoma cruzi</i> parasitophorous vacuole development. Cellular Microbiology, 2017, 19, e12713.	1.1	15
25	VAMP7 regulates constitutive membrane incorporation of the cold-activated channel TRPM8. Nature Communications, 2016, 7, 10489.	5.8	44
26	The SNARE VAMP7 Regulates Exocytic Trafficking of Interleukin-12 in Dendritic Cells. Cell Reports, 2016, 14, 2624-2636.	2.9	36
27	BLOC-1 and BLOC-3 regulate VAMP7 cycling to and from melanosomes via distinct tubular transport carriers. Journal of Cell Biology, 2016, 214, 293-308.	2.3	67
28	Membrane traffic during axon development. Developmental Neurobiology, 2016, 76, 1185-1200.	1.5	40
29	Endoplasmic Reticulum–Plasma Membrane Associations: Structures and Functions. Annual Review of Cell and Developmental Biology, 2016, 32, 279-301.	4.0	65
30	Identification and Characterization of Botulinum Neurotoxin A Substrate Binding Pockets and Their Re-Engineering for Human SNAP-23. Journal of Molecular Biology, 2016, 428, 372-384.	2.0	28
31	VAMP1/2/3/7., 2016, , 1-11.		0
32	VAMP-7 links granule exocytosis to actin reorganization during platelet activation. Blood, 2015, 126, 651-660.	0.6	49
33	EMBO Workshopal fin del mundo: a meeting on membrane trafficking and its implication for polarity and diseases. Biology of the Cell, 2015, 107, 245-248.	0.7	0
34	Structure and function of longin SNAREs. Journal of Cell Science, 2015, 128, 4263-72.	1.2	88
35	Migration Speed of Cajal-Retzius Cells Modulated by Vesicular Trafficking Controls the Size of Higher-Order Cortical Areas. Current Biology, 2015, 25, 2466-2478.	1.8	54
36	Role of tetanus neurotoxin insensitive vesicle-associated membrane protein in membrane domains transport and homeostasis. Cellular Logistics, 2015, 5, e1025182.	0.9	17

#	Article	IF	CITATIONS
37	The Q-soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (Q-SNARE) SNAP-47 Regulates Trafficking of Selected Vesicle-associated Membrane Proteins (VAMPs). Journal of Biological Chemistry, 2015, 290, 28056-28069.	1.6	31
38	Role of VAMP3 and VAMP7 in the commitment of <i>Yersinia pseudotuberculosis</i> to LC3-associated pathways involving single- or double-membrane vacuoles. Autophagy, 2014, 10, 1588-1602.	4.3	39
39	Biogenesis and transport of membrane domains-potential implications in brain pathologies. Biochimie, 2014, 96, 75-84.	1.3	2
40	Inhibition of very long acyl chain sphingolipid synthesis modifies membrane dynamics during plant cytokinesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1422-1430.	1.2	24
41	The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion. Nature Cell Biology, 2014, 16, 434-444.	4.6	123
42	Dependence of Immunoglobulin Class Switch Recombination in B Cells on Vesicular Release of ATP and CD73 Ectonucleotidase Activity. Cell Reports, 2013, 3, 1824-1831.	2.9	72
43	VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nature Immunology, 2013, 14, 723-731.	7.0	118
44	Increased activity of the Vesicular Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor TI-VAMP/VAMP7 by Tyrosine Phosphorylation in the Longin Domain. Journal of Biological Chemistry, 2013, 288, 11960-11972.	1.6	30
45	Absence of TI-VAMP/Vamp7 Leads to Increased Anxiety in Mice. Journal of Neuroscience, 2012, 32, 1962-1968.	1.7	63
46	The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion. Journal of Cell Biology, 2012, 196, 37-46.	2.3	44
47	Vezatin Is Essential for Dendritic Spine Morphogenesis and Functional Synaptic Maturation. Journal of Neuroscience, 2012, 32, 9007-9022.	1.7	20
48	Glutamate Controls tPA Recycling by Astrocytes, Which in Turn Influences Glutamatergic Signals. Journal of Neuroscience, 2012, 32, 5186-5199.	1.7	67
49	A Molecular Network for the Transport of the TI-VAMP/VAMP7 Vesicles from Cell Center to Periphery. Developmental Cell, 2012, 23, 166-180.	3.1	108
50	Tlâ€VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biology of the Cell, 2012, 104, 213-228.	0.7	79
51	Vesicular traffic in cell navigation. FEBS Journal, 2011, 278, 4497-4505.	2.2	62
52	Syntaxin1A Lateral Diffusion Reveals Transient and Local SNARE Interactions. Journal of Neuroscience, 2011, 31, 17590-17602.	1.7	59
53	Transport of the Major Myelin Proteolipid Protein Is Directed by VAMP3 and VAMP7. Journal of Neuroscience, 2011, 31, 5659-5672.	1.7	78
54	Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. Journal of Cell Science, 2010, 123, 723-735.	1.2	77

#	Article	IF	CITATIONS
55	Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. Development (Cambridge), 2010, 137, e1-e1.	1.2	0
56	Dynamic Interaction of Amphiphysin with N-WASP Regulates Actin Assembly. Journal of Biological Chemistry, 2009, 284, 34244-34256.	1.6	65
57	Subcellular localization of the carbohydrate Lewisx adhesion structure in hippocampus cell cultures. Brain Research, 2009, 1287, 39-46.	1.1	8
58	Multiple roles of the vesicularâ€SNARE TIâ€VAMP in postâ€Golgi and endosomal trafficking. FEBS Letters, 2009, 583, 3817-3826.	1.3	136
59	Role of Varp, a Rab21 exchange factor and Tlâ€VAMP/VAMP7 partner, in neurite growth. EMBO Reports, 2009, 10, 1117-1124.	2.0	90
60	Bric-a-Brac at the Golgi. Developmental Cell, 2009, 16, 775-776.	3.1	1
61	Quantifying Neurite Growth Mediated by Interactions among Secretory Vesicles, Microtubules, and Actin Networks. Biophysical Journal, 2009, 96, 840-857.	0.2	55
62	<i>Biology of the Cell</i> : serving the cell biology community. Biology of the Cell, 2009, 101, e1-2.	0.7	1
63	Vesicle associated membrane protein (VAMP)â€7 and VAMPâ€8, but not VAMPâ€2 or VAMPâ€3, are required for activationâ€induced degranulation of mature human mast cells. European Journal of Immunology, 2008, 38, 855-863.	1.6	97
64	Confocal imaging and tracking of the exocytotic routes for <scp>D</scp> â€serineâ€mediated gliotransmission. Glia, 2008, 56, 1271-1284.	2.5	100
65	MT1-MMP-Dependent Invasion Is Regulated by TI-VAMP/VAMP7. Current Biology, 2008, 18, 926-931.	1.8	186
66	Substrate Recognition Mechanism of VAMP/Synaptobrevin-cleaving Clostridial Neurotoxins. Journal of Biological Chemistry, 2008, 283, 21145-21152.	1.6	52
67	Role of HRB in Clathrin-dependent Endocytosis. Journal of Biological Chemistry, 2008, 283, 34365-34373.	1.6	68
68	Polymorphisms of coding trinucleotide repeats of homeogenes in neurodevelopmental psychiatric disorders. Psychiatric Genetics, 2008, 18, 295-301.	0.6	19
69	Targeting the Epithelial SNARE Machinery by Bacterial Neurotoxins. Methods in Molecular Biology, 2008, 440, 187-201.	0.4	2
70	Distinct v-SNAREs regulate direct and indirect apical delivery in polarized epithelial cells. Journal of Cell Science, 2007, 120, 3309-3320.	1.2	66
71	Fast Turnover of L1 Adhesions in Neuronal Growth Cones Involving Both Surface Diffusion and Exo/Endocytosis of L1 Molecules. Molecular Biology of the Cell, 2007, 18, 3131-3143.	0.9	48
72	v-SNARE cellubrevin is required for basolateral sorting of AP-1B–dependent cargo in polarized epithelial cells. Journal of Cell Biology, 2007, 177, 477-488.	2.3	74

#	Article	IF	CITATIONS
73	Exocytic Mechanisms for Axonal and Dendritic Growth. , 2007, , 115-135.		Ο
74	What is the function of neuronal APâ \in 3?. Biology of the Cell, 2007, 99, 349-361.	0.7	46
75	Membranes and organelles. Current Opinion in Cell Biology, 2007, 19, 357-358.	2.6	1
76	Expression of the Longin domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. Biology of the Cell, 2007, 99, 261-271.	0.7	77
77	Trafficking and signalling at the synapse: where are we heading to?. Biology of the Cell, 2007, 99, e1-e1.	0.7	0
78	Exocytosis. , 2007, , 1-9.		0
79	Identification of the Amino Acid Residues Rendering TI-VAMP Insensitive toward Botulinum Neurotoxin B. Journal of Molecular Biology, 2006, 357, 574-582.	2.0	25
80	Cdc42 and Actin Control Polarized Expression of TI-VAMP Vesicles to Neuronal Growth Cones and Their Fusion with the Plasma Membrane. Molecular Biology of the Cell, 2006, 17, 1194-1203.	0.9	85
81	Loss of AP-3 function affects spontaneous and evoked release at hippocampal mossy fiber synapses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16562-16567.	3.3	89
82	The Tetanus Neurotoxin-Sensitive and Insensitive Routes to and from the Plasma Membrane: Fast and Slow Pathways?. Traffic, 2005, 6, 366-373.	1.3	73
83	Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6362-6367.	3.3	86
84	Weak Effect of Membrane Diffusion on the Rate of Receptor Accumulation at Adhesive Contacts. Biophysical Journal, 2005, 89, L40-L42.	0.2	27
85	Protein interaction mapping: A Drosophila case study. Genome Research, 2005, 15, 376-384.	2.4	509
86	Calcium-Triggered Exocytosis and Clathrin-Mediated Endocytosis of Synaptic Vesicles. Science Signaling, 2005, 2005, tr1-tr1.	1.6	2
87	A Model for Fast-Track Exocytosis of Synaptic Vesicles. Science Signaling, 2005, 2005, tr2-tr2.	1.6	1
88	Identification of SNAREs Involved in Synaptotagmin VII-regulated Lysosomal Exocytosis. Journal of Biological Chemistry, 2004, 279, 20471-20479.	1.6	281
89	Insulin and Hypertonicity Recruit GLUT4 to the Plasma Membrane of Muscle Cells by Using N-Ethylmaleimide-sensitive Factor-dependent SNARE Mechanisms but Different v-SNAREs: Role of TI-VAMP. Molecular Biology of the Cell, 2004, 15, 5565-5573.	0.9	56
90	A Mutant Impaired in SNARE Complex Dissociation Identifies the Plasma Membrane as First Target of Synaptobrevin 2. Traffic, 2004, 5, 371-382.	1.3	13

#	Article	IF	CITATIONS
91	TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages. EMBO Journal, 2004, 23, 4166-4176.	3.5	185
92	VAMP subfamilies identified by specific R NARE motifs. Biology of the Cell, 2004, 96, 251-256.	0.7	23
93	Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends in Biochemical Sciences, 2004, 29, 682-688.	3.7	138
94	Cycling of Synaptic Vesicles: How Far? How Fast!. Science Signaling, 2004, 2004, re19-re19.	1.6	32
95	Activation-Induced Polarized Recycling Targets T Cell Antigen Receptors to the Immunological Synapse. Immunity, 2004, 20, 577-588.	6.6	284
96	SNAP-25 Modulation of Calcium Dynamics Underlies Differences in GABAergic and Glutamatergic Responsiveness to Depolarization. Neuron, 2004, 41, 599-610.	3.8	192
97	VAMP subfamilies identified by specific R-SNARE motifs. Biology of the Cell, 2004, 96, 251-256.	0.7	23
98	PÃ1e. Medecine/Sciences, 2004, 20, 389-389.	0.0	0
99	Polarité. Medecine/Sciences, 2004, 20, 388-388.	0.0	0
100	The cell outgrowth secretory endosome (COSE): a specialized compartment involved in neuronal morphogenesis. Biology of the Cell, 2003, 95, 419-424.	0.7	26
101	Tetanus neurotoxin-insensitive vesicle-associated membrane protein localizes to a presynaptic membrane compartment in selected terminal subsets of the rat brain. Neuroscience, 2003, 122, 59-75.	1.1	48
102	Retroviral Genomic RNAs Are Transported to the Plasma Membrane by Endosomal Vesicles. Developmental Cell, 2003, 5, 161-174.	3.1	138
103	Ectopic expression of syntaxin 1 in the ER redirects TI-VAMP- and cellubrevin-containing vesicles. Journal of Cell Science, 2003, 116, 2805-2816.	1.2	42
104	A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9011-9016.	3.3	209
105	Cross Talk between Tetanus Neurotoxin-insensitive Vesicle-associated Membrane Protein-mediated Transport and L1-mediated Adhesion. Molecular Biology of the Cell, 2003, 14, 4207-4220.	0.9	75
106	D53 is a novel endosomal SNARE-binding protein that enhances interaction of syntaxin 1 with the synaptobrevin 2 complex in vitro. Biochemical Journal, 2003, 370, 213-221.	1.7	33
107	Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. Journal of Cell Biology, 2002, 156, 653-664.	2.3	479
108	Mécanisme de la fusion membranaire. Medecine/Sciences, 2002, 18, 1113-1119.	0.0	11

#	Article	lF	CITATIONS
109	Trafic. Medecine/Sciences, 2002, 18, 920-920.	0.0	Ο
110	A Common Exocytotic Mechanism Mediates Axonal and Dendritic Outgrowth. Journal of Neuroscience, 2001, 21, 3830-3838.	1.7	142
111	[21] Properties of Rab13 interaction with rod cGMP phosphodiesterase δsubunit. Methods in Enzymology, 2001, 329, 197-209.	0.4	4
112	Na + â€H + exchanger 3 (NHE3) is present in lipid rafts in the rabbit ileal brush border: a role for rafts in trafficking and rapid stimulation of NHE3. Journal of Physiology, 2001, 537, 537-552.	1.3	119
113	Longins: a new evolutionary conserved VAMP family sharing a novel SNARE domain. Trends in Biochemical Sciences, 2001, 26, 407-409.	3.7	110
114	Clostridial neurotoxin-insensitive vesicular SNAREs in exocytosis and endocytosis. Biology of the Cell, 2000, 92, 449-453.	0.7	22
115	Tetanus toxin-mediated cleavage of cellubrevin inhibits proton secretion in the male reproductive tract. American Journal of Physiology - Renal Physiology, 2000, 278, F717-F725.	1.3	53
116	Soluble NSF Attachment Protein Receptors (SNAREs) in RBL-2H3 Mast Cells: Functional Role of Syntaxin 4 in Exocytosis and Identification of a Vesicle-Associated Membrane Protein 8-Containing Secretory Compartment. Journal of Immunology, 2000, 164, 5850-5857.	0.4	212
117	Tight Junction, a Platform for Trafficking and Signaling Protein Complexes. Journal of Cell Biology, 2000, 151, F31-F36.	2.3	162
118	Rab11 Regulates the Compartmentalization of Early Endosomes Required for Efficient Transport from Early Endosomes to the Trans-Golgi Network. Journal of Cell Biology, 2000, 151, 1207-1220.	2.3	368
119	Vimentin Filaments in Fibroblasts Are a Reservoir for SNAP23, a Component of the Membrane Fusion Machinery. Molecular Biology of the Cell, 2000, 11, 3485-3494.	0.9	74
120	Role of Tetanus Neurotoxin Insensitive Vesicle-Associated Membrane Protein (Ti-Vamp) in Vesicular Transport Mediating Neurite Outgrowth. Journal of Cell Biology, 2000, 149, 889-900.	2.3	203
121	NA+/H+-exchanger 3 (NHE3) is present in lipid rafts in the ileal absorptive cell brush border: A role for rafts and the actin cytoskeleton in endocytosis of NHE3. Gastroenterology, 2000, 118, A599.	0.6	0
122	Subcellular Localization of Tetanus Neurotoxin-Insensitive Vesicle-Associated Membrane Protein (VAMP)/VAMP7 in Neuronal Cells: Evidence for a Novel Membrane Compartment. Journal of Neuroscience, 1999, 19, 9803-9812.	1.7	100
123	Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3734-3738.	3.3	231
124	Cultured glial cells express the SNAP-25 analogue SNAP-23. , 1999, 27, 181-187.		103
125	Exocytosis: SNAREs drum up!. European Journal of Neuroscience, 1998, 10, 415-422.	1.2	29
126	The Rod cGMP Phosphodiesterase δ Subunit Dissociates the Small GTPase Rab13 from Membranes. Journal of Biological Chemistry, 1998, 273, 22340-22345.	1.6	61

#	Article	IF	CITATIONS
127	A Novel Tetanus Neurotoxin-insensitive Vesicle-associated Membrane Protein in SNARE Complexes of the Apical Plasma Membrane of Epithelial Cells. Molecular Biology of the Cell, 1998, 9, 1437-1448.	0.9	296
128	Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9559-9564.	3.3	296
129	Molecular mechanisms in synaptic vesicle recycling. Journal of Neurocytology, 1996, 25, 701-715.	1.6	24
130	The V Sector of the V-ATPase, Synaptobrevin, and Synaptophysin Are Associated on Synaptic Vesicles in a Triton X-100-resistant, Freeze-thawing Sensitive, Complex. Journal of Biological Chemistry, 1996, 271, 2193-2198.	1.6	130
131	Cellubrevin and synaptobrevins: similar subcellular localization and biochemical properties in PC12 cells Journal of Cell Biology, 1995, 129, 219-231.	2.3	130
132	v- and t-SNAREs in neuronal exocytosis: A need for additional components to define sites of release. Neuropharmacology, 1995, 34, 1351-1360.	2.0	64
133	Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells Journal of Cell Biology, 1994, 125, 1015-1024.	2.3	225
134	NMDA and carbachol but not AMPA affect differently the release of [3H]GABA in striosome- and matrix-enriched areas of the rat striatum. Brain Research, 1994, 649, 243-252.	1.1	13
135	Opposite presynaptic regulations by glutamate through NMDA receptors of dopamine synthesis and release in rat striatal synaptosomes. Brain Research, 1994, 640, 205-214.	1.1	36
136	Modulation of GABA release by α-amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-d-aspartate receptors in matrix-enriched areas of the rat striatum. Neuroscience, 1992, 50, 769-780.	1.1	37
137	l-Glutamate-evoked release of dopamine from synaptosomes of the rat striatum: Involvement of AMPA and N-methyl-d-aspartate receptors. Neuroscience, 1992, 47, 333-339.	1.1	166
138	Specific role of n-acetyl-aspartyl-glutamate in the in vivo regulation of dopamine release from dendrites and nerve terminals of nigrostriatal dopaminergic neurons in the cat. Neuroscience, 1991, 42, 19-28.	1.1	55
139	Vamp7. The AFCS-nature Molecule Pages, 0, , .	0.2	1
140	LRRK2 Interacts with Endosomal Vesicular SNAREs and Regulates Secretion. SSRN Electronic Journal, 0, , .	0.4	0
141	Vamp3. The AFCS-nature Molecule Pages, 0, , .	0.2	0
142	Biomechanical Control of Lysosomal Secretion Via the VAMP7 Hub: A Tug-of-War Mechanism Between VARP and LRRK1. SSRN Electronic Journal, 0, , .	0.4	0
143	Role of SNAREs in Unconventional Secretion—Focus on the VAMP7-Dependent Secretion. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	21