Adriana D Briscoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683934/publications.pdf

Version: 2024-02-01

72 papers

6,192 citations

36 h-index 79541

78 all docs 78 docs citations

78 times ranked 5879 citing authors

g-index

#	Article	IF	CITATIONS
1	Multiple Mechanisms of Photoreceptor Spectral Tuning in <i>Heliconius</i> Butterflies. Molecular Biology and Evolution, 2022, 39, .	3.5	17
2	True UV color vision in a female butterfly with two UV opsins. Journal of Experimental Biology, 2021, 224, .	0.8	21
3	Air temperature drives the evolution of mid-infrared optical properties of butterfly wings. Scientific Reports, 2021, 11, 24143.	1.6	7
4	Disentangling Population History and Character Evolution among Hybridizing Lineages. Molecular Biology and Evolution, 2020, 37, 1295-1305.	3.5	5
5	Infrared optical and thermal properties of microstructures in butterfly wings. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1566-1572.	3.3	51
6	From the butterfly's point of view: learned colour association determines differential pollination of two co-occurring mock verbains by <i>Agraulis vanillae</i> (Nymphalidae). Biological Journal of the Linnean Society, 2020, 130, 715-725.	0.7	9
7	A two-step method for identifying photopigment opsin and gene sequences underlying human color vision phenotypes. Molecular Vision, 2020, 26, 158-172.	1.1	4
8	Evolution of Phototransduction Genes in Lepidoptera. Genome Biology and Evolution, 2019, 11, 2107-2124.	1.1	32
9	Empowering Latina scientists. Science, 2019, 363, 825-826.	6.0	7
10	Drift and Directional Selection Are the Evolutionary Forces Driving Gene Expression Divergence in Eye and Brain Tissue of <i>Heliconius </i> Butterflies. Genetics, 2019, 213, 581-594.	1.2	29
11	Frequency dependence shapes the adaptive landscape of imperfect Batesian mimicry. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172786.	1.2	30
12	Evolutionary and structural analyses uncover a role for solvent interactions in the diversification of cocoonases in butterflies. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172037.	1.2	8
13	Experimental field tests of Batesian mimicry in the swallowtail butterfly <i>Papilio polytes</i> Ecology and Evolution, 2018, 8, 7657-7666.	0.8	8
14	Evolution of Sex-Biased Gene Expression and Dosage Compensation in the Eye and Brain of Heliconius Butterflies. Molecular Biology and Evolution, 2018, 35, 2120-2134.	3.5	31
15	Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies. Molecular Biology and Evolution, 2017, 34, 2271-2284.	3.5	46
16	Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies. Evolution; International Journal of Organic Evolution, 2017, 71, 949-959.	1.1	15
17	Copy Number Variation and Expression Analysis Reveals a Nonorthologous Pinta Gene Family Member Involved in Butterfly Vision. Genome Biology and Evolution, 2017, 9, 3398-3412.	1.1	3
18	Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evolutionary Biology, 2017, 17, 226.	3.2	27

#	Article	IF	CITATIONS
19	Ultraviolet and yellow reflectance but not fluorescence is important for visual discrimination of conspecifics by $\langle i \rangle$ Heliconius erato $\langle i \rangle$. Journal of Experimental Biology, 2017, 220, 1267-1276.	0.8	47
20	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	1.2	154
21	Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in <i>Heliconius</i> Butterflies. Genome Biology and Evolution, 2016, 8, 2581-2596.	1.1	21
22	Determination of Photoreceptor Cell Spectral Sensitivity in an Insect Model from In Vivo Intracellular Recordings. Journal of Visualized Experiments, 2016, , 53829.	0.2	11
23	Sexual dimorphism in the compound eye of <i>Heliconius erato</i> : a nymphalid butterfly with at least five spectral classes of photoreceptor. Journal of Experimental Biology, 2016, 219, 2377-87.	0.8	57
24	Genome-wide analysis of ionotropic receptors provides insight into their evolution in Heliconius butterflies. BMC Genomics, 2016, 17, 254.	1.2	38
25	Transcriptome-Wide Differential Gene Expression inBicyclus anynanaButterflies: Female Vision-Related Genes Are More Plastic. Molecular Biology and Evolution, 2016, 33, 79-92.	3.5	34
26	The scale-of-choice effect and how estimates of assortative mating in the wild can be biased due to heterogeneous samples. Evolution; International Journal of Organic Evolution, 2015, 69, 1845-1857.	1.1	43
27	Molecular evolution and expression of the CRAL_TRIO protein family in insects. Insect Biochemistry and Molecular Biology, 2015, 62, 168-173.	1.2	13
28	Rapid diversification associated with ecological specialization in Neotropical <i>Adelpha</i> butterflies. Molecular Ecology, 2015, 24, 2392-2405.	2.0	73
29	Opsin Clines in Butterflies Suggest Novel Roles for Insect Photopigments. Molecular Biology and Evolution, 2015, 32, 368-379.	3.5	50
30	Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in <i>Heliconius</i> butterflies. Evolution; International Journal of Organic Evolution, 2014, 68, 3410-3420.	1.1	101
31	Genome Sequence of a Novel Iflavirus from mRNA Sequencing of the Butterfly Heliconius erato. Genome Announcements, 2014, 2, .	0.8	13
32	Complete Dosage Compensation and Sex-Biased Gene Expression in the Moth Manduca sexta. Genome Biology and Evolution, 2014, 6, 526-537.	1.1	52
33	Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations. EvoDevo, 2014, 5, 7.	1.3	79
34	Characterisation of the RNA interference response against the long-wavelength receptor of the honeybee. Insect Biochemistry and Molecular Biology, 2013, 43, 959-969.	1.2	24
35	Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies. PLoS Genetics, 2013, 9, e1003620.	1.5	154
36	UV Photoreceptors and UV-Yellow Wing Pigments in <i>Heliconius</i> Butterflies Allow a Color Signal to Serve both Mimicry and Intraspecific Communication. American Naturalist, 2012, 179, 38-51.	1.0	98

#	Article	IF	CITATIONS
37	Phenotypic plasticity in opsin expression in a butterfly compound eye complements sex role reversal. BMC Evolutionary Biology, 2012, 12, 232.	3.2	46
38	The benefit of being a social butterfly: communal roosting deters predation. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2769-2776.	1.2	65
39	Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, 2012, 487, 94-98.	13.7	1,086
40	Color vision and learning in the monarch butterfly, <i>Danaus plexippus </i> (Nymphalidae). Journal of Experimental Biology, 2011, 214, 509-520.	0.8	85
41	Reply to Nozawa et al.: Complementary statistical methods support positive selection of a duplicated UV opsin gene in <i>Heliconius</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	3.3	3
42	Contrasting Modes of Evolution of the Visual Pigments in Heliconius Butterflies. Molecular Biology and Evolution, 2010, 27, 2392-2405.	3.5	35
43	Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in <i>Heliconius</i> butterflies. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3628-3633.	3.3	148
44	Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies. BMC Evolutionary Biology, 2009, 9, 99.	3.2	34
45	Episodes in insect evolution. Integrative and Comparative Biology, 2009, 49, 590-606.	0.9	57
46	A butterfly eye's view of birds. BioEssays, 2008, 30, 1151-1162.	1.2	25
47	The lycaenid butterfly <i>Polyommatus icarus</i> uses a duplicated blue opsin to see green. Journal of Experimental Biology, 2008, 211, 361-369.	0.8	41
48	Reconstructing the ancestral butterfly eye: focus on the opsins. Journal of Experimental Biology, 2008, 211, 1805-1813.	0.8	110
49	Adaptive evolution of color vision as seen through the eyes of butterflies. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8634-8640.	3.3	66
50	Insect Cryptochromes: Gene Duplication and Loss Define Diverse Ways to Construct Insect Circadian Clocks. Molecular Biology and Evolution, 2007, 24, 948-955.	3.5	345
51	Gene Duplication Is an Evolutionary Mechanism for Expanding Spectral Diversity in the Long-Wavelength Photopigments of Butterflies. Molecular Biology and Evolution, 2007, 24, 2016-2028.	3.5	66
52	Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. Journal of Experimental Biology, 2006, 209, 3079-3090.	0.8	90
53	The two CRYs of the butterfly. Current Biology, 2006, 16, 730.	1.8	4
54	Color discrimination in the red range with only one long-wavelength sensitive opsin. Journal of Experimental Biology, 2006, 209, 1944-1955.	0.8	107

#	Article	lF	CITATIONS
55	The two CRYs of the butterfly. Current Biology, 2005, 15, R953-R954.	1.8	217
56	Adult stemmata of the butterfly Vanessa cardui express UV and green opsin mRNAs. Cell and Tissue Research, 2005, 319, 175-179.	1.5	18
57	Expression of UV-, blue-, long-wavelength-sensitive opsins and melatonin in extraretinal photoreceptors of the optic lobes of hawkmoths. Cell and Tissue Research, 2005, 321, 443-458.	1.5	34
58	Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species. Journal of Experimental Biology, 2005, 208, 687-696.	0.8	44
59	Connecting the Navigational Clock to Sun Compass Input in Monarch Butterfly Brain. Neuron, 2005, 46, 457-467.	3.8	183
60	Molecular characterization and expression of the UV opsin in bumblebees:three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. Journal of Experimental Biology, 2005, 208, 2347-2361.	0.8	99
61	Early Duplication and Functional Diversification of the Opsin Gene Family in Insects. Molecular Biology and Evolution, 2004, 21, 1583-1594.	3.5	65
62	The spectrum of human rhodopsin disease mutations through the lens of interspecific variation. Gene, 2004, 332, 107-118.	1.0	40
63	Not all butterfly eyes are created equal: Rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui. Journal of Comparative Neurology, 2003, 458, 334-349.	0.9	98
64	Homology Modeling Suggests a Functional Role for Parallel Amino Acid Substitutions Between Bee and Butterfly Red- and Green-Sensitive Opsins. Molecular Biology and Evolution, 2002, 19, 983-986.	3. 5	28
65	THEEVOLUTION OFCOLORVISION ININSECTS. Annual Review of Entomology, 2001, 46, 471-510.	5.7	1,230
66	Molecular evolution of a long wavelength-sensitive opsin in mimetic Heliconius butterflies (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 2001, 72, 435-449.	0.7	23
67	Functional Diversification of Lepidopteran Opsins Following Gene Duplication. Molecular Biology and Evolution, 2001, 18, 2270-2279.	3.5	62
68	Molecular evolution of a long wavelength-sensitive opsin in mimetic Heliconius butterflies (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 2001, 72, 435-449.	0.7	3
69	Six Opsins from the Butterfly Papilio glaucus: Molecular Phylogenetic Evidence for Paralogous Origins of Red-Sensitive Visual Pigments in Insects. Journal of Molecular Evolution, 2000, 51, 110-121.	0.8	81
70	Evolution of color vision. Current Opinion in Neurobiology, 1999, 9, 622-627.	2.0	73
71	Intron splice sites of Papilio glaucus PglRh3 corroborate insect opsin phylogeny. Gene, 1999, 230, 101-109.	1.0	14
72	Molecular Diversity of Visual Pigments in the Butterfly Papilio glaucus. Die Naturwissenschaften, 1998, 85, 33-35.	0.6	41