James A Rising

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683924/publications.pdf Version: 2024-02-01

IAMES A RISINC

#	Article	IF	CITATIONS
1	Estimating economic damage from climate change in the United States. Science, 2017, 356, 1362-1369.	6.0	714
2	Estimating a social cost of carbon for global energy consumption. Nature, 2021, 598, 308-314.	13.7	136
3	Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits. Quarterly Journal of Economics, 2022, 137, 2037-2105.	3.8	99
4	Economic impacts of tipping points in the climate system. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	78
5	Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nature Communications, 2020, 11, 4991.	5.8	59
6	The social cost of carbon dioxide under climate-economy feedbacks and temperature variability. Environmental Research Letters, 2021, 16, 094037.	2.2	52
7	Accessibility across transport modes and residential developments in Nairobi. Journal of Transport Geography, 2019, 74, 77-90.	2.3	46
8	The small world of global marine fisheries: The cross-boundary consequences of larval dispersal. Science, 2019, 364, 1192-1196.	6.0	41
9	Integrated perspective on translating biophysical to economic impacts of climate change. Nature Climate Change, 2021, 11, 563-572.	8.1	34
10	Challenges and innovations in the economic evaluation of the risks of climate change. Ecological Economics, 2022, 197, 107437.	2.9	26
11	The U.S. Water Data Gap—A Survey of Stateâ€Level Water Data Platforms to Inform the Development of a National Water Portal. Earth's Future, 2019, 7, 433-449.	2.4	24
12	Tipping point dynamics in global land use. Environmental Research Letters, 2021, 16, 125012.	2.2	23
13	Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits. SSRN Electronic Journal, 0, , .	0.4	22
14	Mimi-PAGE, an open-source implementation of the PAGE09 integrated assessment model. Scientific Data, 2018, 5, 180187.	2.4	22
15	Political competition and renewable energy transitions over long time horizons: A dynamic approach. Ecological Economics, 2016, 124, 175-184.	2.9	20
16	Assessing future climate change impacts in the EU and the USA: insights and lessons from two continental-scale projects*. Environmental Research Letters, 2019, 14, 084010.	2.2	18
17	Decision-making and integrated assessment models of the water-energy-food nexus. Water Security, 2020, 9, 100056.	1.2	14
18	The importance of infrastructure and national demand to represent constraints on water supply in the United States. Global Environmental Change, 2022, 73, 102468.	3.6	4

#	Article	IF	CITATIONS
19	A flexible approach to model coupling through probabilistic pooling. Environmental Modelling and Software, 2017, 93, 409-417.	1.9	1
20	Creating the Commons: Fisheries and the World Bank. History of Economic Thought and Policy, 2014, , 75-95.	0.2	0
21	Reply to Keen etÂal.: Dietz etÂal. modeling of climate tipping points is informative even if estimates are a probable lower bound. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201191119.	3.3	0