Juan Pablo Gutierrez Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683903/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A note on ENDOG: a computer program for analysing pedigree information. Journal of Animal Breeding and Genetics, 2005, 122, 172-176.	0.8	394
2	Improving the estimation of realized effective population sizes in farm animals. Journal of Animal Breeding and Genetics, 2009, 126, 327-332.	0.8	173
3	MolKin v2.0: A Computer Program for Genetic Analysis of Populations Using Molecular Coancestry Information. Journal of Heredity, 2005, 96, 718-721.	1.0	166
4	Individual increase in inbreeding allows estimating effective sizes from pedigrees. Genetics Selection Evolution, 2008, 40, 359-78.	1.2	139
5	Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example. Journal of Animal Breeding and Genetics, 2003, 120, 95-105.	0.8	136
6	Pedigree analysis in the Andalusian horse: population structure, genetic variability and influence of the Carthusian strain. Livestock Science, 2005, 95, 57-66.	1.2	121
7	Inbreeding Depression on Female Fertility and Calving Ease in Spanish Dairy Cattle. Journal of Dairy Science, 2007, 90, 5744-5752.	1.4	118
8	Estimation of effective population size from the rate of coancestry in pedigreed populations. Journal of Animal Breeding and Genetics, 2011, 128, 56-63.	0.8	109
9	Application of individual increase in inbreeding to estimate realized effective sizes from real pedigrees. Journal of Animal Breeding and Genetics, 2008, 125, 301-310.	0.8	86
10	Genetic relationships and admixture among sheep breeds from Northern Spain assessed using microsatellites1. Journal of Animal Science, 2004, 82, 2246-2252.	0.2	75
11	Genetic relationships between calving date, calving interval, age at first calving and type traits in beef cattle. Livestock Science, 2002, 78, 215-222.	1.2	66
12	Genetic parameters for canalisation analysis of litter size and litter weight traits at birth in mice. Genetics Selection Evolution, 2006, 38, 445-62.	1.2	60
13	Population history and genetic variability in the Spanish Arab Horse assessed via pedigree analysis. Livestock Science, 2008, 113, 24-33.	0.6	60
14	Assessment of inbreeding depression for body measurements in Spanish Purebred (Andalusian) horses. Livestock Science, 2009, 122, 149-155.	0.6	54
15	The Origins of Iberian Horses Assessed via Mitochondrial DNA. Journal of Heredity, 2005, 96, 663-669.	1.0	52
16	Pedigree information reveals moderate to high levels of inbreeding and a weak population structure in the endangered Catalonian donkey breed. Journal of Animal Breeding and Genetics, 2005, 122, 378-386.	0.8	51
17	Multiple paternal origins of domestic cattle revealed by Y-specific interspersed multilocus microsatellites. Heredity, 2010, 105, 511-519.	1.2	50
18	Testing the usefulness of the molecular coancestry information to assess genetic relationships in livestock using a set of Spanish sheep breeds1. Journal of Animal Science, 2005, 83, 737-744.	0.2	45

#	Article	IF	CITATIONS
19	Size and shape analysis of morphofunctional traits in the Spanish Arab horse. Livestock Science, 2009, 125, 43-49.	0.6	42
20	Pedigree analysis of Iran-Black sheep and inbreeding effects on growth and reproduction traits. Small Ruminant Research, 2014, 116, 14-20.	0.6	40
21	Pedigree analysis and inbreeding effects on early growth traits and greasy fleece weight in Markhoz goat. Small Ruminant Research, 2015, 124, 1-8.	0.6	40
22	Genetic relationships among calving ease, calving interval, birth weight, and weaning weight in the Asturiana de los Valles beef cattle breed1. Journal of Animal Science, 2007, 85, 69-75.	0.2	39
23	Genetic relationships among calving ease, gestation length, and calf survival to weaning in the Asturiana de los Valles beef cattle breed1. Journal of Animal Science, 2010, 88, 96-101.	0.2	39
24	Relationship between genealogical and microsatellite information characterizing losses of genetic variability: Empirical evidence from the rare Xalda sheep breed. Livestock Science, 2008, 115, 80-88.	0.6	38
25	Genetic characterisation of Burkina Faso goats using microsatellite polymorphism. Livestock Science, 2009, 123, 322-328.	0.6	37
26	Pedigree analysis and inbreeding depression on growth traits in Brazilian Marchigiana and Bonsmara breeds1. Journal of Animal Science, 2012, 90, 99-108.	0.2	37
27	Genetic variability in the endangered Asturcón pony assessed using genealogical and molecular information. Livestock Science, 2007, 107, 162-169.	0.6	36
28	Estimation of genetic parameters of type traits in Asturiana de los Valles beef cattle breed. Journal of Animal Breeding and Genetics, 2002, 119, 93-100.	0.8	34
29	Genetic relationships between Spanish Assaf (Assaf.E) and Spanish native dairy sheep breeds. Small Ruminant Research, 2008, 80, 39-44.	0.6	31
30	Genetic analysis of calf survival at different preweaning ages in beef cattle. Livestock Science, 2003, 83, 13-20.	1.2	30
31	Genetic parameters related to environmental variability of weight traits in a selection experiment for weight gain in mice; signs of correlated canalised response. Genetics Selection Evolution, 2008, 40, 279-293.	1.2	30
32	Genealogical analyses in open populations: the case of three Arabâ€derived Spanish horse breeds. Journal of Animal Breeding and Genetics, 2009, 126, 335-347.	0.8	30
33	Genetic control of the environmental variance for birth weight in seven generations of a divergent selection experiment in mice. Journal of Animal Breeding and Genetics, 2016, 133, 227-237.	0.8	30
34	Estimation of direct and maternal genetic parameters for preâ€weaning traits in the Asturiana de los Valles beef cattle breed through animal and sire models. Journal of Animal Breeding and Genetics, 1997, 114, 261-266.	0.8	29
35	Genetic parameters and relationships between fibre and type traits in two breeds of Peruvian alpacas. Small Ruminant Research, 2010, 88, 6-11.	0.6	29
36	Assessment of inbreeding depression in a Guzerat dairy herd: Effects of individual increase in inbreeding coefficients on production and reproduction. Journal of Dairy Science, 2010, 93, 4902-4912.	1.4	29

#	Article	IF	CITATIONS
37	Multivariate characterisation of morphological traits in Assaf (Assaf.E) sheep. Small Ruminant Research, 2011, 100, 122-130.	0.6	29
38	Designing an early selection morphological linear traits index for dressage in the Pura Raza Español horse. Animal, 2017, 11, 948-957.	1.3	29
39	Genetic analysis of six production traits in Peruvian alpacas. Livestock Science, 2009, 123, 193-197.	0.6	28
40	Genetic analysis of days open in beef cattle. Livestock Science, 2005, 93, 283-289.	1.2	26
41	Influence of foreign breeds on the genetic structure of the Spanish Sport Horse population. Livestock Science, 2011, 142, 70-79.	0.6	26
42	Modelling genetic evaluation for dressage in Pura Raza Español horses with focus on the rider effect. Journal of Animal Breeding and Genetics, 2014, 131, 395-402.	0.8	25
43	Genetic parameters affecting 180-days standardised milk yield, test-day milk yield and lactation length in Spanish Assaf (Assaf.E) dairy sheep. Small Ruminant Research, 2007, 70, 233-238.	0.6	24
44	Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability. Animal, 2016, 10, 1770-1777.	1.3	19
45	Genetic parameters estimation for preweaning traits and their relationship with reproductive, productive and morphological traits in alpaca. Animal, 2017, 11, 746-754.	1.3	19
46	Genetic parameters for growth of fiber diameter in alpacas1. Journal of Animal Science, 2011, 89, 2310-2315.	0.2	18
47	Weighting fibre and morphological traits in a genetic index for an alpaca breeding programme. Animal, 2014, 8, 360-369.	1.3	18
48	Response to selection while maximizing genetic variance in small populations. Genetics Selection Evolution, 2016, 48, 69.	1.2	17
49	Factors affecting actual weaning weight, preweaning average daily gain and relative growth rate in Asturiana de los Valles beef cattle breed. Archives Animal Breeding, 2003, 46, 235-243.	0.5	17
50	Genetic diversity loss due to selection for scrapie resistance in the rare Spanish Xalda sheep breed. Livestock Science, 2007, 111, 204-212.	0.6	16
51	Analysis of the existence of major genes affecting alpaca fiber traits1. Journal of Animal Science, 2010, 88, 3783-3788.	0.2	16
52	Association of microsatellite markers with fiber diameter trait in Peruvian alpacas (Vicugna pacos). Livestock Science, 2014, 161, 6-16.	0.6	16
53	Modulating birth weight heritability in mice1. Journal of Animal Science, 2017, 95, 531-537.	0.2	16
54	Pedigree estimation of the (sub) population contribution to the total gene diversity: the horse coat colour case. Animal, 2010, 4, 867-875.	1.3	15

#	Article	IF	CITATIONS
55	Heritability of individual fiber medullation in Peruvian alpacas. Small Ruminant Research, 2018, 165, 93-100.	0.6	15
56	Quantifying diversity losses due to selection for scrapie resistance in three endangered Spanish sheep breeds using microsatellite information. Preventive Veterinary Medicine, 2009, 91, 172-178.	0.7	14
57	Computing effective population size from molecular data: The case of three rare Spanish ruminant populations. Livestock Science, 2011, 138, 202-206.	0.6	14
58	Genetic diversity in Kermani sheep assessed from pedigree analysis. Small Ruminant Research, 2013, 114, 202-205.	0.6	14
59	Genetic parameters for birthweight environmental variability in mice. Journal of Animal Breeding and Genetics, 2013, 130, 404-414.	0.8	14
60	Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama). Small Ruminant Research, 2015, 130, 81-89.	0.6	13
61	Genetic parameters for medullated fiber and its relationship with other productive traits in alpacas. Animal, 2019, 13, 1358-1364.	1.3	13
62	Cross-validation analysis for genetic evaluation models for ranking in endurance horses. Animal, 2018, 12, 20-27.	1.3	12
63	Estimation of genetic parameters for morphological and functional traits in a Menorca horse population. Spanish Journal of Agricultural Research, 2014, 12, 125.	0.3	12
64	Equivalent effective population size mating as a useful tool in the genetic management of the Ibicenco rabbit breed (Conill Pages d'Eivissa). Czech Journal of Animal Science, 2016, 61, 108-116.	0.5	11
65	Estimation of genetic parameters for reproductive traits in alpacas. Animal Reproduction Science, 2015, 163, 48-55.	0.5	10
66	Effect of the gestation and lactation on fiber diameter and its variability in Peruvian alpacas. Livestock Science, 2017, 198, 31-36.	0.6	10
67	Association between body and udder morphological traits and dairy performance in Spanish Assaf sheep. Archives Animal Breeding, 2013, 56, 430-442.	0.5	10
68	ssGBLUP Method Improves the Accuracy of Breeding Value Prediction in Huacaya Alpaca. Animals, 2021, 11, 3052.	1.0	10
69	Direct and correlated selection response for litter size and litter weight at birth in the first parity in mice. Livestock Science, 1998, 53, 217-223.	1.2	9
70	Correlated genetic trend in the environmental variability of weight traits in mice. Livestock Science, 2012, 148, 189-195.	0.6	9
71	The Statistical Scale Effect as a Source of Positive Genetic Correlation Between Mean and Variability: A Simulation Study. G3: Genes, Genomes, Genetics, 2019, 9, 3001-3008.	0.8	9
72	Estimates of direct and indirect effects for early juvenile survival in captive populations maintained for conservation purposes: the case of Cuvier's gazelle. Ecology and Evolution, 2014, 4, 4117-4129.	0.8	8

#	Article	IF	CITATIONS
73	Effect of feed restriction on the environmental variability of birth weight in divergently selected lines of mice. Genetics Selection Evolution, 2019, 51, 27.	1.2	8
74	Cytoplasmic line effects for birth weight and preweaning growth traits in the Asturiana de los Valles beef cattle breed. Livestock Science, 2012, 143, 177-183.	0.6	7
75	Impact of selection for birth weight variability on reproductive longevity: A mice model. Journal of Animal Breeding and Genetics, 2022, 139, 370-379.	0.8	7
76	Feed and reproductive efficiency differences between divergently selected lines for birthweight environmental variability in mice. Journal of Animal Breeding and Genetics, 2018, 135, 378-389.	0.8	6
77	Selection Response in a Divergent Selection Experiment for Birth Weight Variability in Mice Compared with a Control Line. Animals, 2020, 10, 920.	1.0	6
78	Variabilidad fenotÃpica del porcentaje de fibras meduladas en el vellón de alpaca Huacaya. Revista De Investigaciones Veterinarias Del Peru, 2019, 30, 699-708.	0.0	6
79	Restricting inbreeding while maintaining selection response for weight gain in Mus musculus. Journal of Animal Breeding and Genetics, 2011, 128, 276-283.	0.8	5
80	Assessment of population structure depending on breeding objectives in Spanish Arabian horse by genealogical and molecular information. Livestock Science, 2014, 168, 9-16.	0.6	5
81	Genetic and phenotypic aspects of early reproductive performance in Raeini Cashmere goats. Tropical Animal Health and Production, 2019, 51, 2175-2180.	0.5	5
82	Colorimetry analysis of coat color and its relationship with fiber traits in alpacas. Animal, 2021, 15, 100219.	1.3	5
83	The influence of natural selection in breeding programs: A simulation study. Livestock Science, 2017, 204, 98-103.	0.6	4
84	Combining Threshold, Thurstonian and Classical Linear Models in Horse Genetic Evaluations for Endurance Competitions. Animals, 2020, 10, 1075.	1.0	4
85	Challenging the selection for consistency in the rank of endurance competitions. Genetics Selection Evolution, 2020, 52, 20.	1.2	4
86	Comparison of two models for estimation of variance components in a sample of Spanish Holstein Friesians. Journal of Animal Breeding and Genetics, 1994, 111, 169-174.	0.8	3
87	Genetic variability characterization of the moroccan houbara bustard (<i>Chlamydotis undulata) Tj ETQq1 1 0.78</i>	34314 rgB ⁻ 0.5	Г /gverlock 1
88	Crossbreed genetic performance study in the eventing horse competition. Animal Production Science, 2016, 56, 1454.	0.6	3
89	Genetic parameters for canalization analysis of morphological traits in the Pura Raza Español horse. Journal of Animal Breeding and Genetics, 2021, 138, 482-490.	0.8	3
90	Genetic parameters for uniformity of harvest weight in Pacific white shrimp (Litopenaeus vannamei). Genetics Selection Evolution, 2021, 53, 26.	1.2	3

#	Article	IF	CITATIONS
91	Testing a continuous variation in preweaning expression of muscular hypertrophy in beef cattle using field data. Archives Animal Breeding, 2002, 45, 139-149.	0.5	3
92	Análisis del pedigrÃ-en diez poblaciones mexicanas de ovinos. Revista Mexicana De Ciencias Pecuarias, 2020, 11, 1071-1086.	0.1	3
93	Genetic (co)variance across age of fiber diameter and standard deviation in Huacaya alpacas, estimated by repeatability, multi-trait and random regression models. Livestock Science, 2020, 231, 103863.	0.6	2
94	Calving date and its variability as a potential trait in the breeding objective to account for reproductive seasonality in alpacas. Reproduction in Domestic Animals, 2020, 55, 814-821.	0.6	2
95	Polimorfismos de nucleótido simple (PNSs) del gen MC1R en alpacas negras y marrones. Revista Peruana De Biologia, 2021, 28, e19742.	0.1	2
96	Breeding Strategies to Optimize Effective Population Size in Low Census Captive Populations: The Case of Gazella cuvieri. Animals, 2021, 11, 1559.	1.0	2
97	Altered lymphocyte homeostasis after oral prion infection in mouse. Veterinary Immunology and Immunopathology, 2008, 122, 204-215.	0.5	1
98	Impact of the event effect in genetic evaluation for ranking traits in horses. Journal of Animal Breeding and Genetics, 2021, , .	0.8	1