

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683834/publications.pdf Version: 2024-02-01

Ο ΕΥΠ ΟΠ

#	Article	IF	CITATIONS
1	Advanced Separators for Lithiumâ€lon and Lithium–Sulfur Batteries: A Review of Recent Progress. ChemSusChem, 2016, 9, 3023-3039.	6.8	299
2	Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy, 2018, 52, 1-10.	16.0	148
3	Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 8699-8703.	8.0	100
4	Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors. Nano Energy, 2016, 22, 255-268.	16.0	97
5	One-pot aqueous route to synthesize highly ordered cubic and hexagonal mesoporous carbons from resorcinol and hexamine. Carbon, 2012, 50, 476-487.	10.3	96
6	The Progress of Li–S Batteries—Understanding of the Sulfur Redox Mechanism: Dissolved Polysulfide Ions in the Electrolytes. Advanced Materials Technologies, 2018, 3, 1700233.	5.8	85
7	3D Coral-like LLZO/PVDF Composite Electrolytes with Enhanced Ionic Conductivity and Mechanical Flexibility for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52652-52659.	8.0	81
8	Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors. Journal of Power Sources, 2016, 321, 143-154.	7.8	77
9	An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes. Journal of Power Sources, 2014, 269, 129-135.	7.8	73
10	Investigation of the Li–S Battery Mechanism by Real-Time Monitoring of the Changes of Sulfur and Polysulfide Species during the Discharge and Charge. ACS Applied Materials & Interfaces, 2017, 9, 4326-4332.	8.0	70
11	Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design. Nano Energy, 2020, 69, 104451.	16.0	70
12	Dual-doped mesoporous carbon synthesized by a novel nanocasting method with superior catalytic activity for oxygen reduction. Nano Energy, 2016, 26, 131-138.	16.0	68
13	Enhanced supercapacitive performance on TiO2@C coaxial nano-rod array through a bio-inspired approach. Nano Energy, 2015, 15, 75-82.	16.0	64
14	Interfacing soluble polysulfides with a SnO2 functionalized separator: An efficient approach for improving performance of Li-S battery. Journal of Membrane Science, 2018, 563, 380-387.	8.2	64
15	Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 13294-13301.	10.3	63
16	Metal/metal oxide@carbon composites derived from bimetallic Cu/Ni-based MOF and their electrocatalytic performance for glucose sensing. Journal of Electroanalytical Chemistry, 2019, 841, 94-100.	3.8	60
17	Cellulose-based material in lithium-sulfur batteries: A review. Carbohydrate Polymers, 2021, 255, 117469.	10.2	57
18	Electrochemical Metal Deposition on Top of an Organic Monolayer. Journal of Physical Chemistry B, 2006, 110, 17570-17577.	2.6	56

#	Article	IF	CITATIONS
19	Facile synthesis of Fe2O3@graphite nanoparticle composite as the anode for Lithium ion batteries with high cyclic stability. Electrochimica Acta, 2017, 253, 104-113.	5.2	47
20	A synergistic modification of polypropylene separator toward stable lithium–sulfur battery. Journal of Membrane Science, 2020, 597, 117646.	8.2	47
21	Evaporation-induced formation of hollow bismuth@N-doped carbon nanorods for enhanced electrochemical potassium storage. Applied Surface Science, 2020, 514, 145947.	6.1	47
22	A single-step fabrication of CoTe2 nanofilm electrode toward efficient overall water splitting. Electrochimica Acta, 2019, 307, 451-458.	5.2	46
23	High-Capacity and Self-Stabilized Manganese Carbonate Microspheres as Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 25369-25378.	8.0	45
24	Reduced graphene-oxide/highly ordered mesoporous SiOx hybrid material as an anode material for lithium ion batteries. Electrochimica Acta, 2018, 273, 26-33.	5.2	45
25	Quantitative and Qualitative Determination of Polysulfide Species in the Electrolyte of a Lithium–Sulfur Battery using HPLC ESI/MS with One tep Derivatization. Advanced Energy Materials, 2015, 5, 1401888.	19.5	43
26	Improving catalytic activity of metal telluride by hybridization: An efficient Ni3Te2-CoTe composite electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2019, 490, 516-521.	6.1	38
27	SnO ₂ Functionalized Polyethylene Separator with Enhanced Thermal Stability for High Performance Lithium Ion Battery. ChemistrySelect, 2018, 3, 911-916.	1.5	34
28	Synthesis of hierarchical fiberlike ordered mesoporous carbons with excellent electrochemical capacitance performance by a strongly acidic aqueous cooperative assembly route. Journal of Materials Chemistry A, 2013, 1, 15447.	10.3	32
29	1,6-Hexanedithiol Self-Assembled Monolayers on Au(111) Investigated by Electrochemical, Spectroscopic, and Molecular Mechanics Methods. Journal of Physical Chemistry C, 2010, 114, 497-505.	3.1	31
30	Enhancement of Electrochemical Hydrogen Insertion in N-Doped Highly Ordered Mesoporous Carbon. Journal of Physical Chemistry C, 2014, 118, 2370-2374.	3.1	30
31	Confining nano-sized platinum in nitrogen doped ordered mesoporous carbon: An effective approach toward efficient and robust hydrogen evolution electrocatalyst. Journal of Colloid and Interface Science, 2018, 530, 595-602.	9.4	30
32	Synthesis of carbon-SiO2 hybrid layer @ SiO2 @ CNT coaxial nanotube and its application in lithium storage. Electrochimica Acta, 2020, 354, 136726.	5.2	30
33	Synthesis of MnO nano-particle@Flourine doped carbon and its application in hybrid supercapacitor. Applied Surface Science, 2017, 413, 344-350.	6.1	29
34	Activating the hydrogen evolution activity of Pt electrode via synergistic interaction with NiS2. Journal of Colloid and Interface Science, 2021, 582, 591-597.	9.4	29
35	Controlled carbon coating of Fe 2 O 3 nanotube with tannic acid: A bio-inspired approach toward high performance lithium-ion battery anode. Journal of Alloys and Compounds, 2017, 719, 347-352.	5.5	28
36	DFT Study on the Rhodium(II)-Catalyzed C–H Functionalization of Indoles: Enol versus Oxocarbenium Ylide. Organometallics, 2015, 34, 3112-3119.	2.3	27

#	Article	IF	CITATIONS
37	Multifunctional Polypropylene Separator via Cooperative Modification and Its Application in the Lithium–Sulfur Battery. Langmuir, 2020, 36, 11147-11153.	3.5	27
38	Mechanistic Insights into Asymmetric C–H Insertion Cooperatively Catalyzed by a Dirhodium(II) Complex and Chiral Phosphoric Acid. Organometallics, 2016, 35, 2003-2009.	2.3	24
39	Octa(aminophenyl)silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: Synthesis and application for supercapacitors. Electrochimica Acta, 2016, 194, 143-150.	5.2	23
40	Hydrogen Ion Supercapacitor: A New Hybrid Configuration of Highly Dispersed MnO ₂ in Porous Carbon Coupled with Nitrogen-Doped Highly Ordered Mesoporous Carbon with Enhanced H-Insertion. ACS Applied Materials & Interfaces, 2014, 6, 22687-22694.	8.0	21
41	Self-assembly synthesis of a unique stable cocoon-like hematite @C nanoparticle and its application in lithium ion batteries. Journal of Colloid and Interface Science, 2017, 495, 157-167.	9.4	21
42	Lithium ion supercapacitor composed by Si-based anode and hierarchal porous carbon cathode with super long cycle life. Applied Surface Science, 2019, 463, 879-888.	6.1	21
43	Synthesis of MOF-74-derived carbon/ZnCo2O4 nanoparticles@CNT-nest hybrid material and its application in lithium ion batteries. Journal of Applied Electrochemistry, 2019, 49, 1103-1112.	2.9	20
44	Self-assembled N-doped carbon with a tube-in-tube nanostructure for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 559, 244-253.	9.4	20
45	The impacts of nitrogen doping on the electrochemical hydrogen storage in a carbon. International Journal of Energy Research, 2021, 45, 9326-9339.	4.5	20
46	Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites. ACS Applied Materials & amp; Interfaces, 2017, 9, 41332-41338.	8.0	19
47	Tuning the Intrinsic Activity and Electrochemical Surface Area of MoS ₂ via Tiny Zn Doping: Toward an Efficient Hydrogen Evolution Reaction (HER) Catalyst. Chemistry - A European Journal, 2021, 27, 15992-15999.	3.3	19
48	Preferential Solvation of Lithium Cations and Impacts on Oxygen Reduction in Lithium–Air Batteries. ACS Applied Materials & Interfaces, 2015, 7, 19923-19929.	8.0	18
49	Fe and N Coâ€doped Carbons Derived from an Ionic Liquid as Active Bifunctional Oxygen Catalysts. ChemElectroChem, 2017, 4, 1148-1153.	3.4	17
50	Electrochemical hydrogen storage in a nitrogen-doped uniformed microporous carbon. International Journal of Hydrogen Energy, 2018, 43, 14096-14102.	7.1	17
51	3D porous and self-supporting Ni foam@graphene@Ni3S2 as a bifunctional electrocatalyst for overall water splitting in alkaline solution. Journal of Electroanalytical Chemistry, 2020, 858, 113795.	3.8	17
52	Coverage-dependent electro-catalytic activity of Pt sub-monolayer/Au bi-metallic catalyst toward methanol oxidation. International Journal of Hydrogen Energy, 2013, 38, 5665-5670.	7.1	16
53	Electrochemical hydrogen storage in iron nitrogen dual-doped ordered mesoporous carbon. International Journal of Hydrogen Energy, 2019, 44, 7326-7336.	7.1	16
54	Rapid electrodeposition of Fe-doped nickel selenides on Ni foam as a bi-functional electrocatalyst for water splitting in alkaline solution. Journal of Electroanalytical Chemistry, 2022, 906, 116014.	3.8	16

#	Article	IF	CITATIONS
55	Pt Nano-Layer Formation by Redox Replacement of Cu Adlayer on Au(111) Surface. Bulletin of the Korean Chemical Society, 2009, 30, 2875-2876.	1.9	14
56	Improve Electrochemical Hydrogen Insertion on the Carbon Materials Loaded with Pt nano-particles through H spillover. Electrochimica Acta, 2015, 174, 400-405.	5.2	13
57	Engineering aspects of the hybrid supercapacitor with H-insertion electrode. Journal of Power Sources, 2013, 230, 66-69.	7.8	12
58	Fabrication of Z-scheme Bi5O7I/MIL-53(Fe) hybrid with improved photocatalytic performance under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2020, 31, 4822-4835.	2.2	11
59	In-situ polymerized composite polymer electrolyte with cesium-ion additive enables dual-interfacial compatibility in all-solid-state lithium-metal batteries. Journal of Colloid and Interface Science, 2022, 615, 627-635.	9.4	11
60	Fabrication of nitrogen doped carbon encapsulated ZnO particle and its application in a lithium ion conversion supercapacitor. Journal of Materials Research, 2017, 32, 334-342.	2.6	9
61	Ammoniaâ€Treated Ordered Mesoporous Carbons with Hierarchical Porosity and Nitrogenâ€Doping for Lithiumâ€Sulfur Batteries. ChemistrySelect, 2017, 2, 7160-7168.	1.5	8
62	Solid-state fabrication of CNT-threaded Fe1-S@N-doped carbon composite as high-rate anodes for sodium-ion batteries and hybrid capacitors. Journal of Alloys and Compounds, 2021, 869, 159303.	5.5	8
63	Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon. Frontiers in Energy Research, 2014, 2, .	2.3	7
64	A Porous FeCuNi-Based Electrocatalyst Supported by Nickel Foam for Oxygen Evolution Reaction in Alkaline Conditions. Journal of the Electrochemical Society, 2018, 165, F1127-F1132.	2.9	7
65	Formation of thin layer graphite wrapped meso-porous SiOx and its lithium storage application. Ceramics International, 2019, 45, 24707-24716.	4.8	7
66	Performances of Platinum and nitrogen Dual-Doped Ordered Mesoporous Carbon as Sulfur Host for Li-S Battery. International Journal of Electrochemical Science, 2018, 13, 11294-11322.	1.3	6
67	A hybrid supercapacitor constructed by graphene wrapped ordered meso-porous Si based electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 576, 15-21.	4.7	6
68	Coralline-like CoP ₃ @Cu as an efficient electrocatalyst for the hydrogen evolution reaction in acidic and alkaline solutions. New Journal of Chemistry, 2020, 44, 18601-18607.	2.8	6
69	A sandwich-type photoelectrochemical aptasensor using Au/BiVO ₄ and CdS quantum dots for carcinoembryonic antigen assay. Analyst, The, 2021, 146, 5904-5912.	3.5	6
70	Pt Monolayer Creation on a Au Surface via an Underpotentially Deposited Cu Route. Journal of Physical Chemistry C, 2019, 123, 2872-2881.	3.1	5
71	The determination of trace free acid content in lithium-ion battery electrolytes by coulometric titration in non-aqueous media. Analyst, The, 2020, 145, 582-587.	3.5	5
72	Ultrasensitive electrochemical sensor for mercury ion detection based on molybdenum selenide and Au nanoparticles <i>via</i> thymine–Hg ²⁺ –thymine coordination. Analytical Methods, 2022, 14, 278-285.	2.7	5

#	Article	IF	CITATIONS
73	The impact of a trace amount of water in an electrolyte on the performance of Liâ€ion batteries—An empirical kinetic model approach. International Journal of Energy Research, 2022, 46, 7988-7995.	4.5	3
74	Simultaneous phase control and carbon intercalation of MoS ₂ for electrochemical hydrogen evolution catalysis. Materials Advances, 2021, 2, 7482-7489.	5.4	2
75	Hydrogen ion supercapacitor cell construction and rational design of cell structure. International Journal of Energy Research, 2019, 43, 8439.	4.5	1
76	Controllable preparation and superior rate performance of spinel LiMn2O4 hollow microspheres as cathode material for lithium-ion batteries. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 503-508.	1.0	0