
Chongwen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy, 2018, 3, 1093-1100.	39.5	422
2	Reducing Saturationâ€Current Density to Realize Highâ€Efficiency Lowâ€Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803135.	19.5	255
3	Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nature Energy, 2020, 5, 768-776.	39.5	165
4	Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy, 2019, 61, 141-147.	16.0	152
5	Lowâ€Bandgap Mixed Tin‣ead Perovskites and Their Applications in Allâ€Perovskite Tandem Solar Cells. Advanced Functional Materials, 2019, 29, 1808801.	14.9	133
6	Arylammonium-Assisted Reduction of the Open-Circuit Voltage Deficit in Wide-Bandgap Perovskite Solar Cells: The Role of Suppressed Ion Migration. ACS Energy Letters, 2020, 5, 2560-2568.	17.4	131
7	Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 2022, 7, 642-651.	39.5	121
8	Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semiconductor Science and Technology, 2019, 34, 093001.	2.0	89
9	Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustainable Energy and Fuels, 2018, 2, 2460-2467.	4.9	84
10	Mitigating ion migration in perovskite solar cells. Trends in Chemistry, 2021, 3, 575-588.	8.5	81
11	Influence of Charge Transport Layers on Capacitance Measured in Halide Perovskite Solar Cells. Joule, 2020, 4, 644-657.	24.0	69
12	Interface modification of sputtered NiO _x as the hole-transporting layer for efficient inverted planar perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 1972-1980.	5.5	66
13	Methylammoniumâ€Mediated Evolution of Mixedâ€Organicâ€Cation Perovskite Thin Films: A Dynamic Compositionâ€Tuning Process. Angewandte Chemie - International Edition, 2017, 56, 7674-7678.	13.8	59
14	Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells. Nano Energy, 2018, 51, 680-687.	16.0	59
15	Urbach Energy and Open-Circuit Voltage Deficit for Mixed Anion–Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 7796-7804.	8.0	53
16	Methylamine Gas Based Synthesis and Healing Process Toward Upscaling of Perovskite Solar Cells: Progress and Perspective. Solar Rrl, 2017, 1, 1700076.	5.8	40
17	Improving Performance and Stability of Planar Perovskite Solar Cells through Grain Boundary Passivation with Block Copolymers. Solar Rrl, 2019, 3, 1900078.	5.8	40
18	Structural Properties and Stability of Inorganic CsPbI ₃ Perovskites. Small Structures, 2021, 2, 2000089.	12.0	39

CHONGWEN LI

#	Article	IF	CITATIONS
19	Interaction engineering in organic–inorganic hybrid perovskite solar cells. Materials Horizons, 2020, 7, 2208-2236.	12.2	35
20	CH ₃ NH ₂ gas induced (110) preferred cesium-containing perovskite films with reduced Pbl ₆ octahedron distortion and enhanced moisture stability. Journal of Materials Chemistry A, 2017, 5, 4803-4808.	10.3	33
21	Reducing Energy Disorder for Efficient and Stable Snâ^'Pb Alloyed Perovskite Solar Cells Angewandte Chemie - International Edition, 2022, 61, .	13.8	32
22	Perovskite Solar Cells Go Bifacial—Mutual Benefits for Efficiency and Durability. Advanced Materials, 2022, 34, e2106805.	21.0	31
23	High Remaining Factors in the Photovoltaic Performance of Perovskite Solar Cells after High-Fluence Electron Beam Irradiations. Journal of Physical Chemistry C, 2020, 124, 1330-1336.	3.1	30
24	A Cu ₃ PS ₄ nanoparticle hole selective layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 4604-4610.	10.3	29
25	Correlating Hysteresis and Stability with Organic Cation Composition in the Two-Step Solution-Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10588-10596.	8.0	27
26	Effects of intrinsic and atmospherically induced defects in narrow bandgap (FASnI3) <i>x</i> (MAPbI3)1â^ <i>x</i> perovskite films and solar cells. Journal of Chemical Physics, 2020, 152, 064705.	3.0	26
27	Influences of buffer material and fabrication atmosphere on the electrical properties of CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 1115-1123.	8.1	24
28	Assessing the true power of bifacial perovskite solar cells under concurrent bifacial illumination. Sustainable Energy and Fuels, 2021, 5, 2865-2870.	4.9	17
29	Optical and Electronic Losses Arising from Physically Mixed Interfacial Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 4923-4934.	8.0	14
30	Blended additive manipulated morphology and crystallinity transformation toward high performance perovskite solar cells. RSC Advances, 2017, 7, 51944-51949.	3.6	11
31	Insight into the effect of ion source for the solution processing of perovskite films. RSC Advances, 2016, 6, 85026-85029.	3.6	9
32	Monolithic Two-Terminal All-Perovskite Tandem Solar Cells with Power Conversion Efficiency Exceeding 21%. , 2019, , .		3
33	Reducing Energy Disorder for Efficient and Stable Snâ^'Pb Alloyed Perovskite Solar Cells Angewandte Chemie, 2022, 134, .	2.0	3
34	Effects of Fabrication Atmosphere on Bulk and Back Interface Defects of CdTe Solar Cells with CdS and MgZnO Buffers. , 2019, , .		1
35	Simulated Energy Distribution of an Electron-Beam Irradiated on Metal-Halide Perovskite Photovoltaic Devices. Microscopy and Microanalysis, 2021, 27, 1754-1756.	0.4	1