
## Avishek Saha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683752/publications.pdf Version: 2024-02-01



Διμεμέν ζληλ

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Visible LED-based photo-redox properties of sulfur and nitrogen-doped carbon dots designed by solid-state synthesis. Materials Advances, 2022, 3, 355-361.                                                                                | 5.4  | 10        |
| 2  | Solidâ€state Synthesis of Cu doped CDs with Peroxidaseâ€mimicking Activity at Neutral pH and Sensing of<br>Antioxidants. ChemNanoMat, 2022, 8, .                                                                                          | 2.8  | 2         |
| 3  | Recent Advances in the Applications of Carbon Nanostructures on Optical Sensing of Emerging<br>Aquatic Pollutants. ChemNanoMat, 2022, 8, .                                                                                                | 2.8  | 6         |
| 4  | Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects. ACS Nano, 2022, 16, 11742-11754.                                                                                                                            | 14.6 | 11        |
| 5  | Hidden Fine Structure of Quantum Defects Revealed by Single Carbon Nanotube<br>Magneto-Photoluminescence. ACS Nano, 2020, 14, 3451-3460.                                                                                                  | 14.6 | 14        |
| 6  | Mod(n-m,3) Dependence of Defect-State Emission Bands in Aryl-Functionalized Carbon Nanotubes. Nano<br>Letters, 2019, 19, 8503-8509.                                                                                                       | 9.1  | 22        |
| 7  | Optical Effects of Divalent Functionalization of Carbon Nanotubes. Chemistry of Materials, 2019, 31, 6950-6961.                                                                                                                           | 6.7  | 33        |
| 8  | Tuning electron transfer in supramolecular nano-architectures made of fullerenes and porphyrins.<br>Nanoscale, 2019, 11, 10782-10790.                                                                                                     | 5.6  | 16        |
| 9  | Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon<br>nanotubes. Nature Chemistry, 2018, 10, 1089-1095.                                                                                         | 13.6 | 78        |
| 10 | Constraining Photoluminescent Defect States in Chirality-Sorted Covalently Doped Single-Walled<br>Carbon Nanotubes. ECS Meeting Abstracts, 2018, , .                                                                                      | 0.0  | 0         |
| 11 | Interfacial charge transfer in functionalized multi-walled carbon nanotube@TiO <sub>2</sub><br>nanofibres. Nanoscale, 2017, 9, 7911-7921.                                                                                                 | 5.6  | 71        |
| 12 | Light harvesting enhancement upon incorporating alloy structured<br>CdSe <sub>X</sub> Te <sub>1â^'X</sub> quantum dots in DPP:PC <sub>61</sub> BM bulk heterojunction<br>solar cells. Journal of Materials Chemistry C, 2017, 5, 654-662. | 5.5  | 20        |
| 13 | Bulbous gold–carbon nanodot hybrid nanoclusters for cancer therapy. Journal of Materials<br>Chemistry B, 2017, 5, 8591-8599.                                                                                                              | 5.8  | 14        |
| 14 | Understanding Charge-Transfer Characteristics in Crystalline Nanosheets of<br>Fullerene/(Metallo)porphyrin Cocrystals. Journal of the American Chemical Society, 2017, 139,<br>10578-10584.                                               | 13.7 | 64        |
| 15 | Sulfur rich electron donors – formation of singlet versus triplet radical ion pair states featuring different lifetimes in the same conjugate. Chemical Science, 2017, 8, 1360-1368.                                                      | 7.4  | 12        |
| 16 | Carbon nanotubes dispersed in aqueous solution by ruthenium(ii) polypyridyl complexes. Nanoscale,<br>2016, 8, 13488-13497.                                                                                                                | 5.6  | 8         |
| 17 | Supramolecular One-Dimensional n/p-Nanofibers. Scientific Reports, 2015, 5, 14154.                                                                                                                                                        | 3.3  | 12        |
| 18 | Photodoping and Enhanced Visible Light Absorption in Singleâ€Walled Carbon Nanotubes<br>Functionalized with a Wide Band Gap Oligomer. Advanced Materials, 2015, 27, 162-167.                                                              | 21.0 | 20        |

Ανιςμέκ δαμά

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Macroscopic Nanotube Fibers Spun from Single-Walled Carbon Nanotube Polyelectrolytes. ACS Nano, 2014, 8, 9107-9112.                                                                                         | 14.6 | 81        |
| 20 | Carbon nanotube networks on different platforms. Carbon, 2014, 79, 1-18.                                                                                                                                    | 10.3 | 115       |
| 21 | Increased Solubility, Liquid-Crystalline Phase, and Selective Functionalization of Single-Walled<br>Carbon Nanotube Polyelectrolyte Dispersions. ACS Nano, 2013, 7, 4503-4510.                              | 14.6 | 86        |
| 22 | Threeâ€Dimensional Solventâ€Vapor Map Generated by Supramolecular Metal omplex Entrapment.<br>Angewandte Chemie - International Edition, 2013, 52, 12615-12618.                                             | 13.8 | 15        |
| 23 | Films of Bare Single-Walled Carbon Nanotubes from Superacids with Tailored Electronic and Photoluminescence Properties. ACS Nano, 2012, 6, 5727-5734.                                                       | 14.6 | 22        |
| 24 | Highly Luminescent–Paramagnetic Nanophosphor Probes for In Vitro Highâ€Contrast Imaging of Human<br>Breast Cancer Cells. Small, 2012, 8, 3028-3034.                                                         | 10.0 | 46        |
| 25 | Single-walled carbon nanotubes shell decorating porous silicate materials: A general platform for studying the interaction of carbon nanotubes with photoactive molecules. Chemical Science, 2011, 2, 1682. | 7.4  | 10        |
| 26 | Non-covalent ruthenium polypyridyl complexes–carbon nanotubes composites: an alternative for functional dissolution of carbon nanotubes in solution. Chemical Communications, 2011, 47, 2246.               | 4.1  | 34        |
| 27 | Optical Bifunctionality of Europium-Complexed Luminescent Graphene Nanosheets. Nano Letters, 2011, 11, 5227-5233.                                                                                           | 9.1  | 88        |
| 28 | Probing a Bifunctional Luminomagnetic Nanophosphor for Biological Applications: a<br>Photoluminescence and Timeâ€Resolved Spectroscopic Study. Small, 2011, 7, 1767-1773.                                   | 10.0 | 48        |