
Pierre Lefebvre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells. Physical Review B, 1998, 58, R13371-R13374.	1.1	400
2	Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. Physical Review B, 1992, 46, 4092-4101.	1.1	284
3	High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy. Applied Physics Letters, 2001, 78, 1252-1254.	1.5	208
4	Internal electric field in wurtziteZnOâ^•Zn0.78Mg0.22Oquantum wells. Physical Review B, 2005, 72, .	1.1	203
5	Barrier-width dependence of group-III nitrides quantum-well transition energies. Physical Review B, 1999, 60, 1496-1499.	1.1	181
6	Influence of electron-phonon interaction on the optical properties of III nitride semiconductors. Journal of Physics Condensed Matter, 2001, 13, 7053-7074.	0.7	143
7	Time-resolved photoluminescence as a probe of internal electric fields in GaN-(GaAl)N quantum wells. Physical Review B, 1999, 59, 15363-15367.	1.1	140
8	Recombination dynamics of free and localized excitons inGaN/Ga0.93Al0.07Nquantum wells. Physical Review B, 1998, 57, R9447-R9450.	1.1	109
9	Radiative lifetime of a single electron-hole pair inGaNâ^•AlNquantum dots. Physical Review B, 2006, 73, .	1.1	106
10	Unified formulation of excitonic absorption spectra of semiconductor quantum wells, superlattices, and quantum wires. Physical Review B, 1993, 48, 17308-17315.	1.1	92
11	Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems. Physical Review B, 2003, 68, .	1.1	91
12	Fractionalâ€dimensional calculation of exciton binding energies in semiconductor quantum wells and quantumâ€well wires. Journal of Applied Physics, 1993, 74, 5626-5637.	1.1	87
13	Band offsets and lattice-mismatch effects in strained-layer CdTe/ZnTe superlattices. Physical Review B, 1988, 38, 7740-7748.	1.1	75
14	Quantum confinement effects of CdS nanocrystals in a sodium borosilicate glass prepared by the solâ€gel process. Journal of Applied Physics, 1995, 77, 287-293.	1.1	75
15	Effects of finite spin-orbit splitting on optical properties of spherical semiconductor quantum dots. Physical Review B, 1996, 53, 7287-7298.	1.1	74
16	Micro Epitaxial lateral overgrowth of GaN/sapphire by Metal Organic Vapour Phase Epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 2002, 7, 1.	1.0	72
17	Exchange effects on excitons in quantum wells. Physical Review B, 1988, 37, 6429-6432.	1.1	69
18	Exciton localization on basal stacking faults in a-plane epitaxial lateral overgrown GaN grown by hydride vapor phase epitaxy. Journal of Applied Physics, 2009, 105, 043102.	1.1	69

#	Article	IF	CITATIONS
19	Barrier composition dependence of the internal electric field in ZnOâ^•Zn1â^'xMgxO quantum wells. Applied Physics Letters, 2007, 90, 201912.	1.5	67
20	Large size dependence of exciton-longitudinal-optical-phonon coupling in nitride-based quantum wells and quantum boxes. Applied Physics Letters, 2002, 80, 428-430.	1.5	66
21	Effect of hydrostatic pressure on GaAs-Ga1â^'xAlxAs microstructures. Physical Review B, 1987, 35, 5630-5634.	1.1	64
22	Polarized emission from GaN/AlN quantum dots: Single-dot spectroscopy and symmetry-based theory. Physical Review B, 2008, 77, .	1.1	60
23	Observation and modeling of the time-dependent descreening of internal electric field in a wurtziteGaN/Al0.15Ga0.85Nquantum well after high photoexcitation. Physical Review B, 2004, 69, .	1.1	58
24	Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates. Journal of Applied Physics, 2009, 105, .	1.1	57
25	Confined excitons in semiconductors: Correlation between binding energy and spectral absorption shape. Physical Review B, 1995, 52, 5756-5759.	1.1	56
26	Effects of GaAlN barriers and of dimensionality on optical recombination processes in InGaN quantum wells and quantum boxes. Applied Physics Letters, 2001, 78, 1538-1540.	1.5	56
27	Photoluminescence of singleGaNâ^•AlNhexagonal quantum dots onSi(111): Spectral diffusion effects. Physical Review B, 2006, 74, .	1.1	55
28	Excitons in semiconductor quantum wells: A straightforward analytical calculation. Journal of Applied Physics, 1992, 72, 300-302.	1.1	54
29	Confined Excitons in GaN-AlGaN Quantum Wells. Physica Status Solidi (B): Basic Research, 1999, 216, 371-374.	0.7	53
30	Analytical model for the refractive index in quantum wells derived from the complex dielectric constant of Wannier excitons in noninteger dimensions. Journal of Applied Physics, 1997, 82, 798-802.	1.1	49
31	Photoreflectance investigations of the bowing parameter in AlGaN alloys lattice-matched to GaN. Applied Physics Letters, 1999, 74, 3353-3355.	1.5	49
32	Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities. Physical Review B, 2008, 78, .	1.1	48
33	Piezospectroscopy of GaAs-AlAs superlattices. Physical Review B, 1989, 40, 7802-7813.	1.1	46
34	Differential spectroscopy of GaAs-Ga1â^'xAlxAs quantum wells: An unambiguous identification of light-hole and heavy-hole states. Physical Review B, 1987, 36, 6581-6584.	1.1	45
35	Low-temperature time-resolved cathodoluminescence study of exciton dynamics involving basal stacking faults in a-plane GaN. Applied Physics Letters, 2009, 94, .	1.5	44
36	Excitons in semiconductor superlattices: Heuristic description of the transfer between Wannier-like and Frenkel-like regimes. Physical Review B, 1992, 46, 13603-13606.	1.1	43

#	Article	IF	CITATIONS
37	Photoluminescence energy and linewidth in GaN/AlN stackings of quantum dot planes. Journal of Applied Physics, 2004, 96, 180-185.	1.1	43
38	Optical properties of GaN epilayers and GaN/AlGaN quantum wells grown by molecular beam epitaxy on GaN(0001) single crystal substrate. Journal of Applied Physics, 2000, 88, 183-187.	1.1	42
39	Time dependence of the photoluminescence of GaN/AlN quantum dots under high photoexcitation. Physical Review B, 2003, 68, .	1.1	39
40	Symmetry of conduction states for GaAs-AlAs type-II superlattices under uniaxial stress. Physical Review B, 1989, 39, 5550-5553.	1.1	38
41	Absorption properties of CdS nanocrystals in glasses; evidence of both weak and strong confinement regimes. Journal of Crystal Growth, 1994, 138, 998-1003.	0.7	38
42	Observation of long-lived oblique excitons in GaN-AlGaN multiple quantum wells. Physical Review B, 1999, 59, 10246-10250.	1.1	36
43	Nonlinear behavior of photoabsorption in hexagonal nitride quantum wells due to free carrier screening of the internal fields. Physical Review B, 2003, 67, .	1.1	36
44	Reflectance spectroscopy on GaAs-Ga0.5Al0.5As single quantum wells under in-plane uniaxial stress at liquid-helium temperature. Physical Review B, 1988, 38, 1215-1220.	1.1	35
45	Scale Effects on Exciton Localization and Nonradiative Processes in GaN/AlGaN Quantum Wells. Physica Status Solidi A, 2000, 180, 127-132.	1.7	35
46	From GaAs:N to oversaturated GaAsN: Analysis of the band-gap reduction. Physical Review B, 2004, 69, .	1.1	34
47	Radiative defects in GaN nanocolumns: Correlation with growth conditions and sample morphology. Applied Physics Letters, 2011, 98, 083104.	1.5	34
48	Selective area growth and characterization of InGaN nano-disks implemented in GaN nanocolumns with different top morphologies. Applied Physics Letters, 2012, 100, .	1.5	34
49	Nonparabolic behavior of GaSb-AlSb quantum wells under hydrostatic pressure. Physical Review B, 1987, 35, 1230-1235.	1.1	32
50	Exciton recombination dynamics in a-plane (Al,Ga)N/GaN quantum wells probed by picosecond photo and cathodoluminescence. Journal of Applied Physics, 2010, 107, .	1.1	32
51	Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates. Applied Physics Letters, 2011, 99, .	1.5	29
52	Valence-band coupling in thin (Ga,In)As-AlAs strained quantum wells. Physical Review B, 1991, 44, 1942-1945.	1.1	28
53	Three-Dimensional Magneto-Photoluminescence as a Probe of the Electronic Properties of Crystal-Phase Quantum Disks in GaAs Nanowires. Nano Letters, 2013, 13, 5303-5310.	4.5	28
54	Electron-hole plasma effect on excitons inGaN/AlxGa1â^'xNquantum wells. Physical Review B, 2000, 61, 15621-15624.	1.1	27

#	Article	IF	CITATIONS
55	Electron localization by a donor in the vicinity of a basal stacking fault in GaN. Physical Review B, 2009, 80, .	1.1	27
56	Intrinsic dynamics of weakly and strongly confined excitons in nonpolar nitride-based heterostructures. Physical Review B, 2011, 83, .	1.1	27
57	Exclusion principle and screening of excitons inGaN/AlxGa1â^'xNquantum wells. Physical Review B, 2001, 63, .	1.1	26
58	Spin-exchange interaction inZnO-based quantum wells. Physical Review B, 2006, 74, .	1.1	26
59	Sub-meV linewidth in GaN nanowire ensembles: Absence of surface excitons due to the field ionization of donors. Physical Review B, 2014, 90, . Room-Temperature Transport of Indirect Excitons in <mml:math< td=""><td>1.1</td><td>26</td></mml:math<>	1.1	26
60	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mo stretchy="false">(<mml:mi>Al</mml:mi><mml:mo>,</mml:mo><mml:mi>Ga</mml:mi><mml:mo) tj<br="">mathvariant="normal">N<mml:mo>/</mml:mo><mml:mi>GaN</mml:mi></mml:mo)></mml:mo </mml:mrow> >	1.5	0 rgBT /Overlo
61	Wells. Physical Review Applied, 2016, 6, . Photoreflectance and piezophotoreflectance studies of strained-layerInxGa1â [^] xAs-GaAs quantum wells. Physical Review B, 1992, 46, 15290-15301.	1.1	25
62	Improved modeling of excitons in type-II semiconductor heterostructures by use of a three-dimensional variational function. Physical Review B, 1994, 50, 11840-11844.	1.1	25
63	Time resolved photoluminescence study of ZnO/(Zn,Mg)O quantum wells. Journal of Crystal Growth, 2006, 287, 12-15.	0.7	24
64	A single equation describes excitonic absorption spectra in all quantum-sized semiconductors. IEEE Journal of Quantum Electronics, 1994, 30, 2287-2292.	1.0	23
65	k.P energy-band structure of ZnO/Zn1â^'xMgxO quantum well heterostructures. Superlattices and Microstructures, 2006, 39, 91-96.	1.4	23
66	Transport of dipolar excitons in (Al,Ga)N/GaN quantum wells. Physical Review B, 2015, 91, .	1.1	23
67	Magnetoexcitons in a narrow single GaAs-Ga0.5Al0.5As quantum well grown by molecular-beam epitaxy. Physical Review B, 1988, 37, 4171-4174.	1.1	22
68	Determination of built-in electric fields in quaternary InAlGaN heterostructures. Applied Physics Letters, 2003, 82, 1541-1543.	1.5	22
69	Efficient radiative recombination and potential profile fluctuations in low-dislocation InGaNâ^•GaN multiple quantum wells on bulk GaN substrates. Journal of Applied Physics, 2005, 97, 103507.	1.1	22
70	Optical investigation of CdTe monomolecular islands in wide ZnTe/(Zn,Mg)Te quantum wells: Evidence of a vertical self-ordering. Physical Review B, 1997, 56, 3907-3912.	1.1	21
71	Importance of excitonic effects and the question of internal electric fields in stacking faults and crystal phase quantum discs: The model-case of GaN. Journal of Applied Physics, 2012, 112, .	1.1	21
72	Dynamics of Excitons in GaN-AlGaN MQWs with Varying Depths, Thicknesses and Barrier Widths. Physica Status Solidi (B): Basic Research, 1999, 216, 361-364.	0.7	20

#	Article	IF	CITATIONS
73	Optical properties of group-III nitride quantum wells and quantum boxes. Journal of Physics Condensed Matter, 2001, 13, 7027-7042.	0.7	20
74	Time-resolved spectroscopy of (Al,Ga,In)N based quantum wells: Localization effects and effective reduction of internal electric fields. Physical Review B, 2002, 66, .	1.1	20
75	Measurement of the optical band gap and crystal-field splitting in wurtzite CdTe. Physical Review B, 1996, 53, 15440-15442.	1.1	19
76	Optical properties of II-VI semiconductor nanocrystals produced by sol-gel synthesis in sodium borosilicate glasses. Superlattices and Microstructures, 1994, 15, 447-451.	1.4	18
77	Time-Resolved Spectroscopy of MBE-Grown InGaN/GaN Self-Formed Quantum Dots. Physica Status Solidi A, 2000, 180, 375-380.	1.7	18
78	Light-Emitting-Diodes based on ordered InGaN nanocolumns emitting in the blue, green and yellow spectral range. Nanotechnology, 2014, 25, 435203.	1.3	18
79	Transport of indirect excitons in ZnO quantum wells. Optics Letters, 2015, 40, 3667.	1.7	17
80	Dynamics of photoluminescence in medium-size CdSe quantum crystallites. Semiconductor Science and Technology, 1997, 12, 958-965.	1.0	16
81	Carrier Dynamics in Group-III Nitride Low-Dimensional Systems: Localization versus Quantum-Confined Stark Effect. Physica Status Solidi (B): Basic Research, 2001, 228, 65-72.	0.7	16
82	Switching of exciton character in double InGaN/GaN quantum wells. Physical Review B, 2018, 98, .	1.1	16
83	Electronic structure of (1 1 3)-grown GaAs-(GaAl)As single quantum wells under biaxial strain fields. Solid State Communications, 1990, 75, 677-682.	0.9	15
84	Reflectance study of interwell couplings in GaAs-Ga1â^'xAlxAs double quantum wells. Physical Review B, 1990, 42, 3435-3443.	1.1	15
85	Uniaxial-stress investigation of asymmetrical GaAs-(Ga,Al)As double quantum wells. Physical Review B, 1993, 47, 1954-1960.	1.1	15
86	Elastic characterization of porous silicon by acoustic microscopy. Superlattices and Microstructures, 1994, 16, 21-23.	1.4	15
87	The Effects of Localization and of Electric Fields on LO-Phonon-Exciton Coupling in InGaN/GaN Quantum Wells and Quantum Boxes. Physica Status Solidi A, 2002, 190, 149-154.	1.7	15
88	One-dimensional exciton luminescence induced by extended defects in nonpolar GaN/(Al,Ga)N quantum wells. Semiconductor Science and Technology, 2011, 26, 025012.	1.0	15
89	Optical properties and microstructure of 2.02-3.30 eV ZnCdO nanowires: Effect of thermal annealing. Applied Physics Letters, 2013, 102, .	1.5	15
90	Charged excitons trapped on monomolecular CdTe islands in wide ZnTe-(Zn,Mg)Te quantum wells. Physical Review B, 1998, 58, 15408-15411.	1.1	14

#	Article	IF	CITATIONS
91	Isoelectronic traps in heavily doped GaAs:(In,N). Physical Review B, 2003, 68, .	1.1	14
92	Oxygen photo-adsorption related quenching of photoluminescence in group-III nitride nanocolumns. Superlattices and Microstructures, 2012, 52, 165-171.	1.4	14
93	Role of the dielectric mismatch on the properties of donors in semiconductor nanostructures bounded by air. Journal of Applied Physics, 2012, 112, 106104.	1.1	14
94	Resonant tunneling via stress-induced valence-band mixings in GaAs-(Ga,Al)As asymmetrical double quantum wells. Physical Review B, 1991, 44, 5635-5647.	1.1	13
95	Optical properties of ZnO nanorods and nanowires. Superlattices and Microstructures, 2006, 39, 358-365.	1.4	13
96	Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities. Physical Review B, 2012, 85, .	1.1	13
97	Reduction of Carrier In-Plane Mobility in Group-III Nitride Based Quantum Wells: The Role of Internal Electric Fields. Physica Status Solidi A, 2001, 183, 61-66.	1.7	12
98	Time-resolved spectroscopy of excitonic transitions in ZnO/(Zn, Mg)O quantum wells. Superlattices and Microstructures, 2007, 41, 352-359.	1.4	12
99	Optical properties of GaN/AIN quantum dots. Comptes Rendus Physique, 2008, 9, 816-829.	0.3	12
100	Influence of spin-orbit split-off band on optical properties of spherical semiconductor nanocrystals. The case of CdTe. Solid State Communications, 1996, 98, 303-306.	0.9	11
101	Evidence of the ordered growth of monomolecular ZnTe islands in CdTe/(Cd,Zn)Te quantum wells on a nominal (001) surface. Physical Review B, 1996, 53, R16164-R16167.	1.1	11
102	Optical absorption of type-II superlattices. Physical Review B, 1997, 55, 15786-15790.	1.1	11
103	Slow Spin Relaxation Observed in InGaN/GaN Multiple Quantum Wells. Physica Status Solidi (B): Basic Research, 1999, 216, 341-345.	0.7	11
104	Carrier relaxation dynamics for As defects in GaN. Applied Physics Letters, 2001, 79, 69-71.	1.5	11
105	VIS-UV ZnCdO/ZnO multiple quantum well nanowires and the quantification of Cd diffusion. Nanotechnology, 2014, 25, 255202.	1.3	11
106	Influence of the spin-orbit split-off valence band inInxGa1â^'xAs/AlyGa1â^'yAs strained-layer quantum wells. Physical Review B, 1992, 45, 3906-3909.	1.1	10
107	Universal formulation of excitonic linear absorption spectra in all semiconductor microstructures. Superlattices and Microstructures, 1995, 17, 19-21.	1.4	10
108	Time-resolved photoluminescence studies of InGaN/GaN multiple quantum wells. MRS Internet Journal of Nitride Semiconductor Research, 1997, 2, 1.	1.0	10

#	Article	IF	CITATIONS
109	Donor binding energies in group III-nitride-based quantum wells: influence of internal electric fields. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 221-223.	1.7	10
110	Thermal carrier emission and nonradiative recombinations in nonpolar (Al,Ga)N/GaN quantum wells grown on bulk GaN. Journal of Applied Physics, 2012, 111, 033517.	1.1	10
111	Photoreflectance spectroscopy as a powerful tool for the investigation of GaN–AlGaN quantum well structures. Solid State Communications, 1999, 109, 567-571.	0.9	9
112	Recombination dynamics of excitons in III-nitride layers and quantum wells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 307-314.	1.7	9
113	Dual Contribution to the Stokes Shift in InGaN-GaN Quantum Wells. Physica Status Solidi (B): Basic Research, 2001, 228, 111-114.	0.7	9
114	Transient photoluminescence of aluminum-rich (Al,Ga)N low-dimensional structures. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 765-768.	0.8	9
115	Trapping Dipolar Exciton Fluids in GaN/(AlGa)N Nanostructures. Nano Letters, 2019, 19, 4911-4918.	4.5	9
116	Two-dimensional "pseudo-donor–acceptor-pairs―model of recombination dynamics in InGaN/GaN quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 64-67.	1.3	8
117	Time-resolved photoluminescence and optically stimulated luminescence measurements of picosecond-excited SrS:Ce,Sm phosphor. Journal of Applied Physics, 2007, 102, 123102.	1.1	8
118	Temperature-Dependence of Exciton Radiative Recombination in (Al,Ga)N/GaN Quantum Wells Grown ona-Plane GaN Substrates. Japanese Journal of Applied Physics, 2013, 52, 08JC01.	0.8	8
119	Picosecond dynamics of free and bound excitons in doped diamond. Physical Review B, 2016, 93, .	1.1	8
120	Optical properties versus growth conditions of CdTe submonolayers inserted in ZnTe quantum wells. Physical Review B, 1998, 58, 15736-15743.	1.1	7
121	ORDERED GAN/INGAN NANORODS ARRAYS GROWN BY MOLECULAR BEAM EPITAXY FOR PHOSPHOR-FREE WHITE LIGHT EMISSION. International Journal of High Speed Electronics and Systems, 2012, 21, 1250010.	0.3	7
122	Complexity of the dipolar exciton Mott transition in GaN/(AlGa)N nanostructures. Physical Review B, 2021, 103, .	1.1	7
123	Piezoreflectivity investigation of CdTe/(Cd,Zn)Te heterostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 16, 87-91.	1.7	6
124	Quantum wells with zero valence-band offset: Drastic enhancement of forbidden excitonic transitions. Physical Review B, 1996, 54, R11078-R11081.	1.1	6
125	Distinct center-of-mass quantization of light-hole and heavy-hole excitons in wide ZnTe-(Zn,Mg)Te quantum wells. Physical Review B, 1997, 56, R10040-R10043.	1.1	6
126	Cw and time-resolved spectroscopy in homoepitaxial GaN films and GaN–GaAlN quantum wells grown by molecular beam epitaxy. Solid State Communications, 2001, 117, 445-448.	0.9	6

#	Article	IF	CITATIONS
127	Exciton dynamics in thick GaN MOVPE epilayers deposited on sapphire MRS Internet Journal of Nitride Semiconductor Research, 1997, 2, 1.	1.0	6
128	New elaboration of Na2O-B2O3-SiO2 glass doped with CdS nanocrystals from gel formed in aqueous solution. Journal of Sol-Gel Science and Technology, 1994, 2, 765-769.	1.1	5
129	Wannier Excitons in Noninteger Dimensions: A Simple Analytical Expression for the Complex Dielectric Constant of Semiconductor Structures. Physica Status Solidi A, 1997, 164, 159-163.	1.7	5
130	Optical properties of self-assembled InGaN/GaN quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 151-155.	1.7	5
131	Timeâ€resolved cathodoluminescence on polychromatic light emitting (In,Ga)N quantum wells grown on (11â€22) GaN facets. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1394-1397.	0.8	5
132	Confined Excitons in GaN–AlGaN Quantum Wells. , 1999, 216, 371.		5
133	Monolayer fluctuation effects on the inter-well coupling in the GaAsî—,(GaAl)As double quantum well systems. Superlattices and Microstructures, 1990, 8, 187-190.	1.4	4
134	Optical properties of InGaAs films embedded in plasma etched InP wells. Applied Physics Letters, 1992, 61, 798-800.	1.5	4
135	Role of the V/III precursor ratio on exciton dynamics in GaN MOCVD epilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 50, 201-204.	1.7	4
136	Time-resolved spectroscopy of MBE-grown GaN/AlGaN hetero- and homo-epitaxial quantum wells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 140-142.	1.7	4
137	Carrier recombination processes in GaAsN: from the dilute limit to alloying. IEE Proceedings: Optoelectronics, 2004, 151, 365-368.	0.8	4
138	Strong potential profile fluctuations and effective localization process in InGaNâ^•GaN multiple quantum wells grown on {10â€1m} faceted surface GaN template. Journal of Applied Physics, 2006, 100, 013528.	1.1	4
139	E-beam nano-patterning for the ordered growth of GaN/InGaN nanorods. Microelectronic Engineering, 2012, 98, 374-377.	1.1	4
140	Advances in MBE Selective Area Growth of III-Nitride Nanostructures: From NanoLEDs to Pseudo Substrates. International Journal of High Speed Electronics and Systems, 2014, 23, 1450020.	0.3	4
141	Hetero- and multi-quantum well structures in wide-gap II-VI semiconductors. Semiconductor Science and Technology, 1991, 6, A1-A7.	1.0	3
142	Center-of-mass quantization of light- and heavy-hole excitons in wide ZnTe-(Zn,Mg)Te quantum wells. Journal of Crystal Growth, 1998, 184-185, 844-848.	0.7	3
143	Highly Photo-Excited Nitride Quantum Wells: Threshold for Exciton Bleaching. Physica Status Solidi (B): Basic Research, 1999, 216, 481-486.	0.7	3
144	Time-Resolved Spectroscopy of MBE-Grown Nitride Based Heterostructures. Physica Status Solidi A, 2000, 178, 101-105.	1.7	3

#	Article	IF	CITATIONS
145	Surprisingly low built-in electric fields in quaternary AlInGaN heterostructures. Physica Status Solidi A, 2004, 201, 190-194.	1.7	3
146	Continuous wave and time resolved spectroscopy of InAsN/GaAsN based quantum dots. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 2598-2603.	0.8	3
147	Structural investigations of InGaAs/InGaAs SLSs for optoelectronic device applications. Superlattices and Microstructures, 1994, 15, 187.	1.4	2
148	Excitons trapped on self-organised CdTe islands in wide ZnTe quantum wells. Journal of Crystal Growth, 1998, 184-185, 288-292.	0.7	2
149	Optical Properties of InGaN/GaN Multiple Quantum Wells. Materials Science Forum, 1998, 264-268, 1295-1298.	0.3	2
150	Photoreflectance Spectroscopy Investigation of GaN-AlGaN Quantum Well Structures. Physica Status Solidi (B): Basic Research, 1999, 216, 221-225.	0.7	2
151	CW and Time-Resolved Optical Spectroscopy of GaN Epilayers and GaN-AlGaN Quantum Wells Grown on A-Plane Sapphire. Physica Status Solidi (B): Basic Research, 1999, 216, 365-369.	0.7	2
152	Strain effects in GaN epilayers. Comptes Rendus Physique, 2000, 1, 51-60.	0.1	2
153	Confined exciton-polariton modes in a thin, homo-epitaxial, GaN film grown by molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 173-177.	1.7	2
154	Longitudinal-optical phonon broadening due to nitrogen atom incorporation in InGaAsN/GaAs quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3887-3890.	0.8	2
155	Localization Effects in InGaN/GaN Double Heterostructure Laser Diode Structures Grown on Bulk GaN Crystals. Japanese Journal of Applied Physics, 2005, 44, 7244-7249.	0.8	2
156	Investigation of Non-Radiative Processes in InAs/(Ga,In)(N,As) Quantum Dots. Japanese Journal of Applied Physics, 2007, 46, L317-L319.	0.8	2
157	Contribution of long lived metastable states to the PL of InP dots in indirect band-gap barrier layers. EPJ Applied Physics, 2007, 37, 15-18.	0.3	2
158	Electron-Hole Exchange Interaction in Quantum Wells. Springer Proceedings in Physics, 1988, , 200-203.	0.1	2
159	Novel Preparation of CdS Nanocrystals in a Sodium Borosilicate Glassy Matrix. Materials Science Forum, 1994, 152-153, 351-354.	0.3	1
160	Sol-gel preparation and optical characterization of sodium borosilicate glasses doped with II-VI semiconductor nanocrystals. , 1994, , .		1
161	Excitonic optical transitions as a probe of self-organized growth of ZnTe (CdTe) islands in (001)-grown CdTe (ZnTe) quantum wells. Superlattices and Microstructures, 1998, 24, 203-208.	1.4	1
162	Exciton Dynamics of Thick GaN Epilayers Deposited by MOVPE on Al ₂ O ₃ . Materials Science Forum, 1998, 264-268, 1279-1282.	0.3	1

#	Article	IF	CITATIONS
163	Optical studies of ultrashort-period GaAs/AlAs superlattices grown on (In,Ga)As pseudosubstrate. Physical Review B, 1998, 58, R7540-R7543.	1.1	1
164	Optical and Structural Properties of AlGaN/GaN Quantum Wells Grown by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	1
165	Quantum-Confined Stark Effect and Recombination Dynamics of Spatially Indirect Excitons in Mbe-Grown GaN-AlGaN Quantum Wells. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	1
166	Recombination Dynamics in Nitride Quantum Boxes and Quantum Wells for Colors Ranging from the UV to the Red. Materials Research Society Symposia Proceedings, 2000, 639, 1011.	0.1	1
167	Excitons and Trions Confined on CdTe Nano-Islands: Optical Tuning of the Dielectric Response. Physica Status Solidi (B): Basic Research, 2000, 220, 875-884.	0.7	1
168	Microscopic Description of Radiative Recombinations in InGaN/GaN Quantum Systems. Materials Research Society Symposia Proceedings, 2002, 743, L5.5.1.	0.1	1
169	Small Built-in Electric Fields in Quaternary InAlGaN Heterostructures. Physica Status Solidi (B): Basic Research, 2002, 234, 764-768.	0.7	1
170	Light-Hole and Heavy-Hole Excitons: the Right Probe for the Physics of Low N Content GaAsN. Physica Status Solidi (B): Basic Research, 2002, 234, 778-781.	0.7	1
171	Photoluminescence of Excitons in InxGa1?xN/InyGa1?yN Multiple Quantum Wells. Physica Status Solidi A, 2002, 190, 161-166.	1.7	1
172	Optical properties of GaN/AlN quantum boxes under high photo-excitation. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2666-2669.	0.8	1
173	Nontrivial carrier recombination dynamics and optical properties of over-excited GaN/AlN quantum dots. Physica Status Solidi (B): Basic Research, 2004, 241, 2779-2782.	0.7	1
174	Micro-photoluminescence of GaN quantum dots embedded in 100 nm wide cylindrical AlN pillars. Superlattices and Microstructures, 2004, 36, 783-790.	1.4	1
175	Enhancement of localization and confinement effects in quaternary group-III nitride multi-quantum wells on SiC substrate. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 642-646.	0.8	1
176	Radiative lifetime in wurtzite GaN/AlN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 183-186.	0.8	1
177	Scale Effects on Exciton Localization and Nonradiative Processes in GaN/AlGaN Quantum Wells. , 2000, 180, 127.		1
178	Reduction of Carrier In-Plane Mobility in Group-III Nitride Based Quantum Wells: The Role of Internal Electric Fields. , 2001, 183, 61.		1
179	The Effects of Localization and of Electric Fields on LO-Phonon–Exciton Coupling in InGaN/GaN Quantum Wells and Quantum Boxes. , 2002, 190, 149.		1
180	General formalism for excitonic absorption edges in confined systems with arbitrary dimensionality. European Physical Journal Special Topics, 1993, 03, 377-380.	0.2	1

#	Article	IF	CITATIONS
181	Studies of electronic structures of GaAs-(GaAlAs) quantum wells grown on (1l3)-oriented GaAS, under uniaxial stress. High Pressure Research, 1992, 9, 93-96.	0.4	Ο
182	Molecular beam epitaxy technology for selective area embedded InGaAs layers in InP substrates. , 1993, ,		0
183	Preparation of π-vi Semiconductor Nanocrystallites in a Glass Matrix Using Chalcogenizing Agent: Application to cdse. Materials Research Society Symposia Proceedings, 1994, 346, 901.	0.1	0
184	Time-Resolved Photoluminescence of GaN / Ga0.93Al0 .07N Quantum Wells. Materials Research Society Symposia Proceedings, 1997, 482, 642.	0.1	0
185	Optical and Structural Properties of AlGaN/GaN Quantum Wells Grown by Molecular Beam Epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 962-967.	1.0	0
186	Microcalorimetric absorption spectroscopy in GaN–AlGaN quantum wells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 319-322.	1.7	0
187	Optical properties of group-III nitride based quantum wells. , 0, , .		0
188	Self-Induced Photon Absorption by Screening of the Electric Fields in Nitride-based Quantum Wells. Materials Research Society Symposia Proceedings, 2002, 743, L11.5.1.	0.1	0
189	Photo-induced interband absorption in group-III nitride quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 247-249.	1.3	Ο
190	Coexistence in photoluminescence of free exciton and bound exciton in low nitrogen content GalnNAs layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2631-2634.	0.8	0
191	Morphology Control of ZnO Nanomaterials using Double Hydrophilic Block Copolymers. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
192	Micro-photoluminescence of isolated hexagonal GaN/AlN quantum dots : role of the electron-hole dipole. AIP Conference Proceedings, 2007, , .	0.3	0
193	Small Internal Electric Fields in Quaternary InAlGaN Heterostructures. , 2004, , 215-222.		Ο
194	Microstructures III-V sous pression hydrostatique. Revue De Physique Appliquée, 1987, 22, 859-866.	0.4	0
195	Center-of-mass quantization of light- and heavy-hole excitons in wide ZnTe-(Zn,Mg)Te quantum wells. Journal of Crystal Growth, 1998, 184-185, 844-848.	0.7	0
196	FINE STRUCTURE OF EXCITONS IN QUANTUM WELLS. Journal De Physique Colloque, 1987, 48, C5-549-C5-552.	0.2	0