Shutao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of elevated air CO2 concentrations on the carbon and nitrogen contents of rice and winter wheat. Acta Ecologica Sinica, 2023, 43, 288-294.	1.9	0
2	Relationship between basal soil respiration and the temperature sensitivity of soil respiration and their key controlling factors across terrestrial ecosystems. Journal of Soils and Sediments, 2022, 22, 769-781.	3.0	7
3	Methane emissions in japonica rice paddy fields under different elevated CO2 concentrations. Nutrient Cycling in Agroecosystems, 2022, 122, 173-189.	2.2	8
4	Effects of 7 Years of Warming and Straw Application on Soil Bacterial, Fungal, and Archaeal Community Compositions and Diversities in a Crop Field. Journal of Soil Science and Plant Nutrition, 2022, 22, 2266-2281.	3.4	5
5	Hyperspectral characteristics and inversion model estimation of winter wheat under different elevated CO2 concentrations. International Journal of Remote Sensing, 2021, 42, 1035-1053.	2.9	5
6	Responses of CO2 and N2O emissions from soil-plant systems to simulated warming and acid rain in cropland. Journal of Soils and Sediments, 2021, 21, 1109-1126.	3.0	7
7	Warming But Not Straw Application Increased Microbial Biomass Carbon and Microbial Biomass Carbon/Nitrogen: Importance of Soil Moisture. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	1
8	Hyperspectral characteristics and leaf area index monitoring of rice (Oryza sativa L.) under carbon dioxide concentration enrichment. Spectroscopy Letters, 2021, 54, 231-243.	1.0	2
9	Relationships between soil respiration and hyperspectral vegetation indexes and crop characteristics under different warming and straw application modes. Environmental Science and Pollution Research, 2021, 28, 40756-40770.	5.3	3
10	A highly agricultural river network in Jurong Reservoir watershed as significant CO2 and CH4 sources. Science of the Total Environment, 2021, 769, 144558.	8.0	35
11	The process of methanogenesis in paddy fields under different elevated CO2 concentrations. Science of the Total Environment, 2021, 773, 145629.	8.0	18
12	Temperature, Moisture, Hyperspectral Vegetation Indexes, and Leaf Traits Regulated Soil Respiration in Different Crop Planting Fields. Journal of Soil Science and Plant Nutrition, 2021, 21, 3203-3220.	3.4	8
13	Simulated acid rain offset a warming-induced increase in soil respiration but did not impact the temperature sensitivity of soil respiration in a cropland. Applied Soil Ecology, 2021, 164, 103936.	4.3	7
14	Effects of agricultural management regimes on rotating cropland ecosystem respiration and its components in Southeast China. Agricultural and Forest Meteorology, 2021, 308-309, 108580.	4.8	1
15	Contrasting effects of long-term acid rain simulation on temperature sensitivity of soil respiration and enzymatic activities in a subtropical forest. Journal of Soils and Sediments, 2020, 20, 412-424.	3.0	14
16	Effects of warming and elevated O3 concentrations on N2O emission and soil nitrification and denitrification rates in a wheat-soybean rotation cropland. Environmental Pollution, 2020, 257, 113556.	7.5	16
17	Temporal and spatial variations in the mean residence time of soil organic carbon and their relationship with climatic, soil and vegetation drivers. Global and Planetary Change, 2020, 195, 103359.	3.5	8
18	Climatic, soil, and vegetation controls of the temperature sensitivity (Q10) of soil respiration across terrestrial biomes. Global Ecology and Conservation, 2020, 22, e00955	2.1	23

SHUTAO CHEN

#	Article	IF	CITATIONS
19	Climatology of rainfall erosivity during 1961–2012 in Jiangsu Province, southeast China. Natural Hazards, 2019, 98, 1155-1168.	3.4	8
20	The sensitivity of soil microbial respiration declined due to crop straw addition but did not depend on the type of crop straw. Environmental Science and Pollution Research, 2019, 26, 30167-30176.	5.3	10
21	Climate and Vegetation Drivers of Terrestrial Carbon Fluxes: A Global Data Synthesis. Advances in Atmospheric Sciences, 2019, 36, 679-696.	4.3	20
22	Effect of Warming and Elevated O3 Concentration on CO2 Emissions in a Wheat-Soybean Rotation Cropland. International Journal of Environmental Research and Public Health, 2019, 16, 1755.	2.6	9
23	Surface nitrous oxide concentrations and fluxes from water bodies of the agricultural watershed in Eastern China. Environmental Pollution, 2019, 251, 185-192.	7.5	38
24	Model prediction of biomeâ€specific global soil respiration from 1960 to 2012. Earth's Future, 2017, 5, 715-729.	6.3	60
25	Experimental Warming Effects on Soil Respiration, Nitrification, and Denitrification in a Winter Wheat-Soybean Rotation Cropland. Communications in Soil Science and Plant Analysis, 2017, 48, 148-161.	1.4	2
26	CO2 emissions from a forest soil as influenced by amendments of different crop straws: Implications for priming effects. Catena, 2015, 131, 56-63.	5.0	27
27	Simulated acid rain changed the proportion of heterotrophic respiration in soil respiration in a subtropical secondary forest. Applied Soil Ecology, 2015, 86, 148-157.	4.3	26
28	Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agricultural and Forest Meteorology, 2014, 198-199, 335-346.	4.8	106
29	A new estimate of global soil respiration from 1970 to 2008. Science Bulletin, 2013, 58, 4153-4160.	1.7	11
30	Soil Respiration and N2O Flux Response to UV-B Radiation and Straw Incorporation in a Soybean–Winter Wheat Rotation System. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	10
31	Effects of elevated O3 on soil respiration in a winter wheat - soybean rotation cropland. Soil Research, 2012, 50, 500.	1.1	6
32	Interannual variability in soil respiration from terrestrial ecosystems in China and its response to climate change. Science China Earth Sciences, 2012, 55, 2091-2098.	5.2	29
33	Effects of Enhanced UV-B Radiation on N2O Emission in a Soil-Winter Wheat System. Water, Air, and Soil Pollution, 2010, 213, 493-499.	2.4	2
34	Enhanced UV-B radiation reduced soil-soybean ecosystem respiration and nitrous oxide emissions. Nutrient Cycling in Agroecosystems, 2010, 87, 71-79.	2.2	6
35	Modeling interannual variability of global soil respiration from climate and soil properties. Agricultural and Forest Meteorology, 2010, 150, 590-605.	4.8	89
36	Soil respiration and N2O emission in croplands under different ploughing practices: a case study in south-east China. Soil Research, 2009, 47, 198.	1.1	11

#	Article	IF	CITATIONS
37	Dependence of wheat and rice respiration on tissue nitrogen and the corresponding net carbon fixation efficiency under different rates of nitrogen application. Advances in Atmospheric Sciences, 2007, 24, 55-64.	4.3	12