Kendall D Clements

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intestinal microbiota in fishes: what's known and what's not. Molecular Ecology, 2014, 23, 1891-1898.	2.0	274
2	The largest bacterium. Nature, 1993, 362, 239-241.	13.7	218
3	Nutritional ecology of marine herbivorous fishes: ten years on. Functional Ecology, 2009, 23, 79-92.	1.7	212
4	VERTEBRATE HERBIVORES IN MARINE AND TERRESTRIAL ENVIRONMENTS: A Nutritional Ecology Perspective. Annual Review of Ecology, Evolution, and Systematics, 1998, 29, 375-403.	6.7	191
5	The trophic status of herbivorous fishes on coral reefs. Marine Biology, 2004, 145, 445.	0.7	174
6	Specimen collection: An essential tool. Science, 2014, 344, 814-815.	6.0	169
7	Hindgut Fermentation in Three Species of Marine Herbivorous Fish. Applied and Environmental Microbiology, 2002, 68, 1374-1380.	1.4	144
8	Extreme polyploidy in a large bacterium. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6730-6734.	3.3	135
9	Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 993-1000.	1.2	111
10	Detritus as food for grazing fishes on coral reefs. Limnology and Oceanography, 2001, 46, 1596-1605.	1.6	106
11	Patterns and processes in the evolutionary history of parrotfishes (Family Labridae). Biological Journal of the Linnean Society, 2012, 107, 529-557.	0.7	105
12	Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biological Journal of the Linnean Society, 2016, , .	0.7	101
13	Disaptation and recovery in the evolution of Antarctic fishes. Trends in Ecology and Evolution, 2000, 15, 267-271.	4.2	89
14	Short-chain fatty acid metabolism in temperate marine herbivorous fish. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1994, 164, 372-377.	0.7	81
15	Fermentation and Gastrointestinal Microorganisms in Fishes. , 1997, , 156-198.		78
16	Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2010, 180, 979-990.	0.7	73
17	Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. Journal of Experimental Marine Biology and Ecology, 2000, 245, 57-68.	0.7	72
18	Clostridia dominate 16S rRNA gene libraries prepared from the hindgut of temperate marine herbivorous fishes. Marine Biology, 2007, 150, 1431-1440.	0.7	67

#	Article	IF	CITATIONS
19	Ontogenetic Development of the Gastrointestinal Microbiota in the Marine Herbivorous Fish Kyphosus sydneyanus. Microbial Ecology, 2005, 49, 590-597.	1.4	65
20	Temperatureâ€related variation in growth rate, size, maturation and life span in a marine herbivorous fish over a latitudinal gradient. Journal of Animal Ecology, 2014, 83, 866-875.	1.3	64
21	A comparison of the feeding mechanisms of two herbivorous labroid fishes, the temperate Odax pullus and the tropical Scarus rubroviolaceus. Marine and Freshwater Research, 1988, 39, 87.	0.7	62
22	Ecological diversification in habitat use by subtidal triplefin fishes (Tripterygiidae). Marine Ecology - Progress Series, 2007, 330, 235-246.	0.9	58
23	Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs, 2020, 39, 1313-1327.	0.9	57
24	Revision of the fish family Kyphosidae (Teleostei: Perciformes). Zootaxa, 2013, 3751, 1-101.	0.2	56
25	New Zealand triplefin fishes (family Tripterygiidae): contrasting population structure and mtDNA diversity within a marine species flock. Molecular Ecology, 2009, 18, 680-696.	2.0	53
26	Rapid evolutionary divergences in reef fishes of the family Acanthuridae (Perciformes: Teleostei). Molecular Phylogenetics and Evolution, 2003, 26, 190-201.	1.2	51
27	Chlorophyte and rhodophyte starches as factors in diet choice by marine herbivorous fish. Journal of Experimental Marine Biology and Ecology, 1999, 240, 137-149.	0.7	49
28	Relationships of the temperate Australasian labrid fish tribe Odacini (Perciformes; Teleostei). Molecular Phylogenetics and Evolution, 2004, 32, 575-587.	1.2	49
29	The Likelihood of Extinction of Iconic and Dominant Herbivores and Detritivores of Coral Reefs: The Parrotfishes and Surgeonfishes. PLoS ONE, 2012, 7, e39825.	1.1	49
30	Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Global Change Biology, 2020, 26, 1285-1294.	4.2	45
31	Diet in odacid and aplodactylid fishes from Australia and New Zealand. Marine and Freshwater Research, 1992, 43, 1451.	0.7	43
32	Initiation of intracellular offspring in Epulopiscium. Molecular Microbiology, 2003, 51, 827-835.	1.2	41
33	New and rare tropical and subtropical fishes from northern New Zealand. New Zealand Journal of Marine and Freshwater Research, 1999, 33, 571-586.	0.8	39
34	Determination of protein for studies of marine herbivory: a comparison of methods. Journal of Experimental Marine Biology and Ecology, 2000, 244, 45-65.	0.7	38
35	Habitat use by triplefin species (Tripterygiidae) on rocky reefs in New Zealand. Journal of Fish Biology, 2006, 69, 1031-1046.	0.7	37
36	World-wide species distributions in the family Kyphosidae (Teleostei: Perciformes). Molecular Phylogenetics and Evolution, 2016, 101, 252-266.	1.2	37

#	Article	IF	CITATIONS
37	Carbohydrate utilisation by microbial symbionts in the marine herbivorous fishes Odax cyanomelas and Crinodus lophodon. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1996, 165, 571-579.	0.7	35
38	Physiology underpins habitat partitioning in a sympatric sisterâ€species pair of intertidal fishes. Functional Ecology, 2008, 22, 1108-1117.	1.7	34
39	Genome Size Evolution in New Zealand Triplefin Fishes. Journal of Heredity, 2005, 96, 356-362.	1.0	32
40	Acid lysis of macroalgae by marine herbivorous fishes: myth or digestive mechanism?. Journal of Experimental Marine Biology and Ecology, 1999, 233, 95-113.	0.7	30
41	Preservation of inherent contractility in isolated gut segments from herbivorous and carnivorous marine fish. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1998, 168, 61-72.	0.7	29
42	Nutritional Ecology of Parrotfishes (Scarinae, Labridae). , 2018, , 42-68.		29
43	Reproductive isolation in temperate reef fishes. Marine Biology, 2007, 152, 619-630.	0.7	27
44	Utilisation of mannitol by temperate marine herbivorous fishes. Journal of Experimental Marine Biology and Ecology, 2010, 391, 50-56.	0.7	27
45	Pelagic larval duration and population connectivity in New Zealand triplefin fishes (Tripterygiidae). Environmental Biology of Fishes, 2011, 91, 275-286.	0.4	27
46	Haemoglobin components and oxygen transport in relation to habitat distribution in triplefin fishes (Tripterygiidae). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1999, 169, 329-334.	0.7	25
47	Cytology of Terminally Differentiated <i>Epulopiscium</i> Mother Cells. DNA and Cell Biology, 2009, 28, 57-64.	0.9	22
48	Comparative Morphology of the Mechanosensory Lateral Line System in a Clade of New Zealand Triplefin Fishes. Brain, Behavior and Evolution, 2010, 75, 292-308.	0.9	22
49	Discordance between diet analysis and dietary macronutrient content in four nominally herbivorous fishes from the Southwestern Atlantic. Marine Biology, 2018, 165, 1.	0.7	22
50	The genomic basis for the evolution of a novel form of cellular reproduction in the bacterium Epulopiscium. BMC Genomics, 2012, 13, 265.	1.2	20
51	Ecomorphological divergence and trophic resource partitioning in 15 syntopic Indo-Pacific parrotfishes (Labridae: Scarini). Biological Journal of the Linnean Society, 2021, 132, 590-611.	0.7	20
52	Determinants of habitat association in a sympatric clade of marine fishes. Marine Biology, 2008, 154, 393-402.	0.7	19
53	Consistent spatial patterns across biogeographic gradients in temperate reef fishes. Ecography, 2008, 31, 84-94.	2.1	19
54	Kyphosus gladius, a new species of sea chub from Western Australia (Teleostei: Kyphosidae), with comments on Segutilum klunzingeri Whitley . Zootaxa, 2013, 3599, 1-18.	0.2	19

#	Article	IF	CITATIONS
55	Distinct microbiota composition and fermentation products indicate functional compartmentalization in the hindgut of a marine herbivorous fish. Molecular Ecology, 2022, 31, 2494-2509.	2.0	19
56	The herbivorous fish family Kyphosidae (Teleostei: Perciformes) represents a recent radiation from higher latitudes. Journal of Biogeography, 2019, 46, 2067-2080.	1.4	18
57	Reproductive biology of an odacine labrid, Odax pullus. Journal of Fish Biology, 2011, 78, 741-761.	0.7	16
58	The influence of diet and gastrointestinal fermentation on key enzymes of substrate utilization in marine teleost fishes. Journal of Experimental Marine Biology and Ecology, 2005, 317, 97-108.	0.7	15
59	Recombination contributes to population diversification in the polyploid intestinal symbiont <i>Epulopiscium</i> sp. type B. ISME Journal, 2019, 13, 1084-1097.	4.4	15
60	The New Zealand triplefin <i>Grahamina signata</i> (Teleostei; Tripterygiidae): A junior synonym of <i>G. gymnota</i> from Tasmania. Journal of the Royal Society of New Zealand, 2000, 30, 373-383.	1.0	14
61	The nutritional basis of seasonal selective feeding by a marine herbivorous fish. Marine Biology, 2017, 164, 1.	0.7	14
62	Verifying invasive marine fish species using molecular techniques: A model example using triplefin fishes (Family Tripterygiidae). New Zealand Journal of Marine and Freshwater Research, 2004, 38, 439-446.	0.8	13
63	Histology and ultrastructure of the gastrointestinal tract in four temperate marine herbivorous fishes. Journal of Morphology, 2022, 283, 16-34.	0.6	13
64	New Species of Balantidium and Pamcichttdotherus (Ciliophora) Inhabiting the Intestines of Four Surgeonfish Species from the Tuvalu Islands, Pacific Ocean. Journal of Eukaryotic Microbiology, 2002, 49, 146-153.	0.8	12
65	Diet of subtropical herbivorous fishes in northeastern New Zealand. New Zealand Journal of Marine and Freshwater Research, 2008, 42, 47-55.	0.8	11
66	Reproductive demography of a temperate protogynous and herbivorous fish, Odax pullus (Labridae,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
67	Body size and ecological diversification in a sister species pair of triplefin fishes. Evolutionary Ecology, 2008, 22, 575-592.	0.5	10
68	Morphological re-examination and taxonomy of the genus Macropodus (Perciformes,) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5	0 222 Td (Os
69	Tannockella kyphosi gen. nov., sp. nov., a member of the family Erysipelotrichaceae, isolated from the hindgut of the marine herbivorous fish Kyphosus sydneyanus. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	9
70	The <i>spollE</i> Homolog of Epulopiscium sp. Type B Is Expressed Early in Intracellular Offspring Development. Journal of Bacteriology, 2011, 193, 2642-2646.	1.0	8
71	<i>Kyphosus vaigiensis</i> (Kyphosidae), a new fish record from northeastern New Zealand. Journal of the Royal Society of New Zealand, 1997, 27, 219-221.	1.0	7
72	Relationship between longâ€ŧerm changes in algal community structure and herbivore diet at the Three Kings Islands, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2004, 38, 837-844.	0.8	7

#	Article	IF	CITATIONS
73	The evolution of habitat specialisation in a group of marine triplefin fishes. Evolutionary Ecology, 2009, 23, 557-568.	0.5	7
74	<i>Matanui,</i> a new genus of deepwater triplefin fishes (Pisces: Tripterygiidae) from New Zealand. Journal of the Royal Society of New Zealand, 2004, 34, 81-103.	1.0	5
75	Temperate marine herbivorous fishes will likely do worse, not better, as waters warm up. Marine Biology, 2016, 163, 1.	0.7	5
76	Reproductive biology of the leatherjacket, Meuschenia scaber (Monacanthidae) (Forster 1801) in the Hauraki Gulf, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2018, 52, 82-99.	0.8	5
77	Evolutionary origin of the Atlantic Cabo Verde nibbler (Girella stuebeli), a member of a primarily Pacific Ocean family of antitropical herbivorous reef fishes. Molecular Phylogenetics and Evolution, 2021, 156, 107021.	1.2	5
78	Effect of ingestion on the stable isotope signatures of marine herbivorous fish diets. Journal of Experimental Marine Biology and Ecology, 2012, 438, 137-143.	0.7	4
79	Selection and intake of algal species in butterfish (Odax pullus; Labridae). Marine Biology, 2016, 163, 1.	0.7	4
80	Does temperature constrain diet choice in a marine herbivorous fish?. Marine Biology, 2020, 167, 1.	0.7	4
81	Geographic variation in life-history traits of the long-lived monacanthid Meuschenia scaber (Monacanthidae). Marine Biology, 2020, 167, 1.	0.7	4
82	New Observations on the Ciliate Genus <i>Vestibulongum</i> (Pycnotrichidae): Vestibular Ultrastructure, Macronuclear Endosymbiotic Bacteria, Biogeography, and Evidence for Host Specificity. Journal of Eukaryotic Microbiology, 2013, 60, 37-43.	0.8	3
83	Environmentally induced morphological variation in the temperate reef fish, Forsterygion lapillum (F.) Tj ETQq1	1 0.78431 0.7	4 rgBT /Over
84	Frontiers in Aquatic Physiology - grand challenge. Frontiers in Physiology, 2010, 1, 6.	1.3	1
85	What a difference a bay makes: natural variation in dietary resources mediates growth in a recently settled herbivorous fish. Coral Reefs, 2016, 35, 1187-1199.	0.9	1
86	Input data for inferring species distributions in Kyphosidae world-wide. Data in Brief, 2016, 8, 1013-1017.	0.5	1
87	Commemorating 50 years of marine science at the Leigh Marine Laboratory. New Zealand Journal of Marine and Freshwater Research, 2013, 47, 275-276.	0.8	0
88	A new species of deep-water triplefin (Pisces: Tripterygiidae) in the genus Ruanoho from coastal New Zealand waters. Zootaxa, 2021, 4981, 137150.	0.2	0