

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1683018/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | NE-trending transtensional faulting in the Pearl River Mouth basin of the Northern South China Sea<br>margin. Gondwana Research, 2023, 120, 4-19.                                          | 6.0  | 10        |
| 2  | Three-stage extension in the Cenozoic Pearl River Mouth Basin triggering onset of the South China<br>Sea spreading. Gondwana Research, 2023, 120, 31-46.                                   | 6.0  | 8         |
| 3  | Deep-shallow coupling response of the Cenozoic Bohai Bay Basin to plate interactions around the<br>Eurasian Plate. Gondwana Research, 2022, 102, 180-199.                                  | 6.0  | 14        |
| 4  | Earth's surface responses during geodynamic evolution: Numerical insight from the southern East<br>China Sea Continental Shelf Basin, West Pacific. Gondwana Research, 2022, 102, 167-179. | 6.0  | 8         |
| 5  | Superplastic Nanomolding of Highly Ordered Metallic Subâ€Micrometer Pillars Arrays for Surface<br>Enhanced Raman Scattering. Advanced Materials Technologies, 2022, 7, 2100891.            | 5.8  | 8         |
| 6  | Nanofabrication through molding. Progress in Materials Science, 2022, 125, 100891.                                                                                                         | 32.8 | 39        |
| 7  | Experimental decoding of grain boundary-based plastic deformation. Acta Materialia, 2022, 225, 117534.                                                                                     | 7.9  | 8         |
| 8  | Flexural subsidence modelling of post-rift paleobathymetry and sedimentary infill in the northern<br>South China Sea margin. Journal of Asian Earth Sciences, 2022, 226, 105076.           | 2.3  | 4         |
| 9  | Dynamic and Reversible Tuning of Particleâ€inâ€Bowl Shaped Plasmonic Resonators for Switchable<br>Surface Enhanced Raman Scattering. Advanced Materials Interfaces, 2022, 9, .             | 3.7  | 5         |
| 10 | Electrochemical Growth of High-Strength Carbon Nanocoils in Molten Carbonates. Nano Letters,<br>2022, 22, 97-104.                                                                          | 9.1  | 17        |
| 11 | Fabrication of 3D metallic glass architectures by a mold-strain-set method. Materials and Design, 2022, 218, 110668.                                                                       | 7.0  | 4         |
| 12 | Deep and surface driving forces to shape the Earth: Insights from the evolution of the northern<br>South China Sea margin. Gondwana Research, 2022, , .                                    | 6.0  | 4         |
| 13 | Thermodynamic model of twisted bilayer graphene: Entropy matters. Journal of the Mechanics and<br>Physics of Solids, 2022, 167, 104972.                                                    | 4.8  | 7         |
| 14 | Peeling mechanics of film-substrate system with mutually embedded nanostructures in the interface.<br>International Journal of Solids and Structures, 2022, 251, 111737.                   | 2.7  | 1         |
| 15 | Observation of speeding growth of metal nanowires by ultra-low frequency micro-vibration assisted superplastic nanomolding. Materials Letters, 2021, 283, 128890.                          | 2.6  | 3         |
| 16 | Ultrawide bandwidth and sensitive electro-optic modulator based on a graphene nanoelectromechanical system with superlubricity. Carbon, 2021, 176, 228-234.                                | 10.3 | 21        |
| 17 | Quantitative characterization of surface wettability by friction force. Applied Surface Science, 2021, 536, 147788.                                                                        | 6.1  | 16        |
| 18 | When plateau meets subduction zone: A review of numerical models. Earth-Science Reviews, 2021, 215, 103556.                                                                                | 9.1  | 25        |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | ANOX: A robust computational model for predicting the antioxidant proteins based on multiple features. Analytical Biochemistry, 2021, 631, 114257.                                             | 2.4  | 2         |
| 20 | Structural and kinematic analysis of Cenozoic rift basins in South China Sea: A synthesis.<br>Earth-Science Reviews, 2021, 216, 103522.                                                        | 9.1  | 38        |
| 21 | Computational Prediction of Superlubric Layered Heterojunctions. ACS Applied Materials & amp; Interfaces, 2021, 13, 33600-33608.                                                               | 8.0  | 11        |
| 22 | One-dimensional Sb2Se3 enabling ultra-flexible solar cells and mini-modules for IoT applications. Nano<br>Energy, 2021, 86, 106101.                                                            | 16.0 | 30        |
| 23 | Nanomolding of Gold and Gold–Silicon Heterostructures at Room Temperature. ACS Nano, 2021, 15,<br>14275-14284.                                                                                 | 14.6 | 8         |
| 24 | Mechanical design of an asymmetric-deformation-driven rotating machinery. Mechanics Research Communications, 2021, 117, 103772.                                                                | 1.8  | 0         |
| 25 | Extraordinary Electromechanical Actuation of Ti2C MXene. Journal of Physical Chemistry C, 2021, 125, 1060-1068.                                                                                | 3.1  | 13        |
| 26 | Dynamic and reversible tuning of pixelated plasmonic cluster arrays. Journal of Materials Chemistry<br>C, 2021, 9, 15927-15931.                                                                | 5.5  | 6         |
| 27 | Ordered Hierarchical Ag Nanostructures as Surface-Enhanced Raman Scattering Platforms for<br>(Bio)chemical Sensing and Pollutant Monitoring. ACS Applied Nano Materials, 2021, 4, 11644-11650. | 5.0  | 11        |
| 28 | Electromechanically Actuated MXene Nanotubes for Tunable Mass Transport. Journal of Physical<br>Chemistry C, 2021, 125, 25275-25283.                                                           | 3.1  | 1         |
| 29 | Tuning the Nonlinear Mechanical Anisotropy of Layered Crystals via Interlayer Twist. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .                                              | 2.2  | 1         |
| 30 | Arbitrarily Patterned Active Wrinkles in Highly Stretched Substrate-Free Dielectric Elastic Membrane.<br>Journal of Applied Mechanics, Transactions ASME, 2021, 88, .                          | 2.2  | 2         |
| 31 | Generation of buckling and wrinkling in elastic films: The effect of initial imperfection. Physical<br>Review E, 2021, 104, 055002.                                                            | 2.1  | 1         |
| 32 | Joining mechanism of bulk metallic glasses in their supercooled liquid region. Journal of Materials<br>Processing Technology, 2020, 279, 116583.                                               | 6.3  | 10        |
| 33 | One-Dimensional Sb <sub>2</sub> Se <sub>3</sub> Enabling a Highly Flexible Photodiode for<br>Light-Source-Free Heart Rate Detection. ACS Photonics, 2020, 7, 352-360.                          | 6.6  | 53        |
| 34 | Controlled fabrication of gold nanotip arrays by nanomolding-necking technology. Nanotechnology, 2020, 31, 144001.                                                                             | 2.6  | 1         |
| 35 | Accretion of oceanic plateaus at continental margins: Numerical modeling. Gondwana Research, 2020, 81, 390-402.                                                                                | 6.0  | 30        |
| 36 | Elastic anisotropy measure for two-dimensional crystals. Extreme Mechanics Letters, 2020, 34, 100615.                                                                                          | 4.1  | 54        |

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | m7CPredictor: An improved machine learning-based model for predicting internal m7G modifications using sequence properties. Analytical Biochemistry, 2020, 609, 113905.                                     | 2.4  | 18        |
| 38 | Spatio-temporally modulated composite metamaterials by using switchable mesostructural topology.<br>Composite Structures, 2020, 251, 112601.                                                                | 5.8  | 0         |
| 39 | High-performance phosphorene electromechanical actuators. Npj Computational Materials, 2020, 6, .                                                                                                           | 8.7  | 13        |
| 40 | Rapid and continuous regulating adhesion strength by mechanical micro-vibration. Nature<br>Communications, 2020, 11, 1583.                                                                                  | 12.8 | 23        |
| 41 | Robust and reproducible fabrication of large area aluminum (Al) micro/nanorods arrays by superplastic nanomolding at room temperature. Applied Physics Express, 2020, 13, 036503.                           | 2.4  | 8         |
| 42 | Bio-inspired self-folding strategy to break the trade-off between strength and ductility in carbon-nanoarchitected materials. Npj Computational Materials, 2020, 6, .                                       | 8.7  | 14        |
| 43 | General Nanomolding of Ordered Phases. Physical Review Letters, 2020, 124, 036102.                                                                                                                          | 7.8  | 21        |
| 44 | A new method for fabrication and electrical characterization of nanosized molten metals.<br>Nanotechnology, 2020, 31, 445705.                                                                               | 2.6  | 2         |
| 45 | Superflexible C <sub>68</sub> -graphyne as a promising anode material for lithium-ion batteries.<br>Journal of Materials Chemistry A, 2019, 7, 17357-17365.                                                 | 10.3 | 19        |
| 46 | Investigation of Temperature and Feature Size Effects on Deformation of Metals by Superplastic Nanomolding. Physical Review Letters, 2019, 122, 016101.                                                     | 7.8  | 13        |
| 47 | Nanomolding of Crystalline Metals: The Smaller the Easier. Physical Review Letters, 2019, 122, 036101.                                                                                                      | 7.8  | 30        |
| 48 | Controlled fabrication of hierarchical metal nanostructures. Materials Letters, 2019, 241, 160-163.                                                                                                         | 2.6  | 3         |
| 49 | Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China. Earth-Science Reviews, 2019, 196, 102884.                                       | 9.1  | 93        |
| 50 | Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf<br>Basin: Thermoâ€mechanical modelling. Geological Journal, 2018, 53, 240-251.                           | 1.3  | 10        |
| 51 | Dynamic mechanism of tectonic inversion and implications for oil–gas accumulation in the Xihu Sag,<br>East China Sea Shelf Basin: Insights from numerical modelling. Geological Journal, 2018, 53, 225-239. | 1.3  | 3         |
| 52 | Test sample geometry for fracture toughness measurements of bulk metallic glasses. Acta Materialia,<br>2018, 145, 477-487.                                                                                  | 7.9  | 43        |
| 53 | Lightweight Ti-based bulk metallic glasses with superior thermoplastic formability. Intermetallics, 2018, 98, 54-59.                                                                                        | 3.9  | 23        |
| 54 | Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nature Communications, 2018, 9, 1129.                                                        | 12.8 | 73        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Atomic imprinting into metallic glasses. Communications Physics, 2018, 1, .                                                                                                                                                                           | 5.3  | 28        |
| 56 | Transition From Lowâ€K to Highâ€K Calcâ€Alkaline Magmatism at Approximately 84ÂMa in the Eastern Pontides<br>(NE Turkey): Magmatic Response to Slab Rollback of the Black Sea. Journal of Geophysical Research:<br>Solid Earth, 2018, 123, 7604-7628. | 3.4  | 34        |
| 57 | Mechanical glass transition revealed by the fracture toughness of metallic glasses. Nature<br>Communications, 2018, 9, 3271.                                                                                                                          | 12.8 | 103       |
| 58 | Novel single-host Al1â^'xSixCxN1â^'x: Mn2+ white phosphors for field emission displays. Journal of<br>Materials Science: Materials in Electronics, 2017, 28, 8405-8413.                                                                               | 2.2  | 2         |
| 59 | One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nature Communications, 2017, 8, 14910.                                                                                                  | 12.8 | 55        |
| 60 | Vibration-accelerated activation of flow units in a Pd-based bulk metallic glass. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 692, 62-66.                                            | 5.6  | 13        |
| 61 | Processing effects on fracture toughness of metallic glasses. Scripta Materialia, 2017, 130, 152-156.                                                                                                                                                 | 5.2  | 38        |
| 62 | Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids. Ultramicroscopy, 2017, 178, 125-130.                                                                                             | 1.9  | 11        |
| 63 | Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces.<br>Scientific Reports, 2016, 6, 39388.                                                                                                                  | 3.3  | 33        |
| 64 | Flaw tolerance of metallic glasses. Acta Materialia, 2016, 107, 220-228.                                                                                                                                                                              | 7.9  | 61        |
| 65 | 3D metallic glass cellular structures. Acta Materialia, 2016, 105, 35-43.                                                                                                                                                                             | 7.9  | 69        |
| 66 | Mechanical buckling induced periodic kinking/stripe microstructures in mechanically peeled graphite<br>flakes from HOPG. Acta Mechanica Sinica/Lixue Xuebao, 2015, 31, 494-499.                                                                       | 3.4  | 4         |
| 67 | Does the fracture toughness of bulk metallic glasses scatter?. Scripta Materialia, 2015, 107, 1-4.                                                                                                                                                    | 5.2  | 44        |
| 68 | Critical Crystallization for Embrittlement in Metallic Glasses. Physical Review Letters, 2015, 115, 265502.                                                                                                                                           | 7.8  | 48        |
| 69 | Shear-accelerated crystallization in a supercooled atomic liquid. Physical Review E, 2015, 91, 020301.                                                                                                                                                | 2.1  | 28        |
| 70 | Protocols for multi-step thermoplastic processing of metallic glasses. Scripta Materialia, 2015, 104,<br>56-59.                                                                                                                                       | 5.2  | 12        |
| 71 | General nanomoulding with bulk metallic glasses. Nanotechnology, 2015, 26, 145301.                                                                                                                                                                    | 2.6  | 37        |
| 72 | Computational Nanocharacterization for Combinatorially Developed Bulk Metallic Glass.<br>International Journal of High Speed Electronics and Systems, 2015, 24, 1520012.                                                                              | 0.7  | 0         |

| #  | Article                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Combinatorial development of bulk metallic glasses. Nature Materials, 2014, 13, 494-500.                                                                 | 27.5 | 196       |
| 74 | The diversity of friction behavior between bi-layer graphenes. Nanotechnology, 2014, 25, 075703.                                                         | 2.6  | 24        |
| 75 | Joining of bulk metallic glasses in air. Acta Materialia, 2014, 62, 49-57.                                                                               | 7.9  | 74        |
| 76 | Experimental advances in superlubricity. Friction, 2014, 2, 182-192.                                                                                     | 6.4  | 57        |
| 77 | Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures. Acta Materialia, 2014, 73, 259-274.                                    | 7.9  | 55        |
| 78 | Observation of High-Speed Microscale Superlubricity in Graphite. Physical Review Letters, 2013, 110, 255504.                                             | 7.8  | 131       |
| 79 | Mechanics and Multidisciplinary Study for Creating Graphene-Based van der Waals Nano/Microscale<br>Devices. , 2013, , 87-104.                            |      | 0         |
| 80 | Binding and interlayer force in the near-contact region of two graphite slabs: Experiment and theory.<br>Journal of Chemical Physics, 2013, 139, 224704. | 3.0  | 21        |
| 81 | Observation of Microscale Superlubricity in Graphite. Physical Review Letters, 2012, 108, 205503.                                                        | 7.8  | 431       |
| 82 | Interlayer shear strength of single crystalline graphite. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28,<br>978-982.                                      | 3.4  | 86        |
| 83 | Interlayer binding energy of graphite: A mesoscopic determination from deformation. Physical Review B, 2012, 85, .                                       | 3.2  | 203       |
| 84 | A graphite nanoeraser. Nanotechnology, 2011, 22, 265706.                                                                                                 | 2.6  | 38        |
| 85 | Stripe/kink microstructures formed in mechanical peeling of highly orientated pyrolytic graphite.<br>Applied Physics Letters, 2010, 96, .                | 3.3  | 19        |