List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1682890/publications.pdf Version: 2024-02-01

		36271	33869
132	10,280	51	99
papers	citations	h-index	g-index
141	141	141	7789
all docs	docs citations	times ranked	citing authors

Μλρκιντε

#	Article	IF	CITATIONS
1	Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity, 2011, 25, 397-407.	2.0	929
2	Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. BioEssays, 2011, 33, 574-581.	1.2	445
3	Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni. Brain, Behavior, and Immunity, 2005, 19, 334-344.	2.0	336
4	Stressor Exposure Disrupts Commensal Microbial Populations in the Intestines and Leads to Increased Colonization by <i>Citrobacter rodentium</i> . Infection and Immunity, 2010, 78, 1509-1519.	1.0	317
5	Catecholamine induced growth of gram negative bacteria. Life Sciences, 1992, 50, 203-212.	2.0	307
6	Microbial Endocrinology in the Microbiome-Gut-Brain Axis: How Bacterial Production and Utilization of Neurochemicals Influence Behavior. PLoS Pathogens, 2013, 9, e1003726.	2.1	306
7	Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiology, 2014, 14, 189.	1.3	292
8	Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiology and Behavior, 2006, 89, 350-357.	1.0	281
9	Microbial endocrinology: how stress influences susceptibility to infection. Trends in Microbiology, 2008, 16, 55-64.	3.5	252
10	Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: Possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain, Behavior, and Immunity, 2008, 22, 354-366.	2.0	233
11	Stress at the intestinal surface: catecholamines and mucosa–bacteria interactions. Cell and Tissue Research, 2011, 343, 23-32.	1.5	223
12	Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiology and Behavior, 2009, 96, 557-567.	1.0	215
13	Microbial endocrinology and infectious disease in the 21st century. Trends in Microbiology, 2004, 12, 14-20.	3.5	209
14	Growth Stimulation of Intestinal Commensal Escherichia coli by Catecholamines: A Possible Contributory Factor in Trauma-Induced Sepsis. Shock, 2002, 18, 465-470.	1.0	188
15	The Mammalian Neuroendocrine Hormone Norepinephrine Supplies Iron for Bacterial Growth in the Presence of Transferrin or Lactoferrin. Journal of Bacteriology, 2000, 182, 6091-6098.	1.0	183
16	Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiology and Behavior, 1998, 65, 63-68.	1.0	181
17	Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet, The, 2003, 361, 130-135.	6.3	179
18	Microbial endocrinology. Gut Microbes, 2014, 5, 381-389.	4.3	169

#	Article	IF	CITATIONS
19	Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiology Letters, 1999, 172, 53-60.	0.7	160
20	Microbial Endocrinology and the Microbiota-Gut-Brain Axis. Advances in Experimental Medicine and Biology, 2014, 817, 3-24.	0.8	152
21	Neuroendocrine–Bacterial Interactions in a Neurotoxin-Induced Model of Trauma. Journal of Surgical Research, 1997, 70, 195-201.	0.8	141
22	The role of microbial endocrinology in infectious disease. Journal of Endocrinology, 1993, 137, 343-345.	1.2	135
23	Clinical and Laboratory Evidence of Autoimmunity in Acute Schizophrenia. Annals of the New York Academy of Sciences, 1987, 496, 676-685.	1.8	132
24	Production of Shiga-like toxins by Escherichia coli O157:H7 can be influenced by the neuroendocrine hormone norepinephrine. Translational Research, 1996, 128, 392-398.	2.4	130
25	Resuscitation of Salmonella enterica Serovar Typhimurium and Enterohemorrhagic Escherichia coli from the Viable but Nonculturable State by Heat-Stable Enterobacterial Autoinducer. Applied and Environmental Microbiology, 2002, 68, 4788-4794.	1.4	127
26	Brain response to cecal infection with Campylobacter jejuni: analysis with Fos immunohistochemistry. Brain, Behavior, and Immunity, 2004, 18, 238-245.	2.0	120
27	Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice. Medical Microbiology and Immunology, 2013, 202, 131-141.	2.6	119
28	Infection-induced viscerosensory signals from the gut enhance anxiety: Implications for psychoneuroimmunology. Brain, Behavior, and Immunity, 2007, 21, 721-726.	2.0	118
29	Elucidation of the Mechanism by Which Catecholamine Stress Hormones Liberate Iron from the Innate Immune Defense Proteins Transferrin and Lactoferrin. Journal of Bacteriology, 2010, 192, 587-594.	1.0	117
30	Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. FEMS Microbiology Letters, 2007, 269, 221-228.	0.7	103
31	The Neuroendocrine Stress Hormone Norepinephrine Augments Escherichia coli O157:H7-Induced Enteritis and Adherence in a Bovine Ligated Ileal Loop Model of Infection. Infection and Immunity, 2004, 72, 5446-5451.	1.0	102
32	Involvement of enterobactin in norepinephrine-mediated iron supply from transferrin to enterohaemorrhagicEscherichia coli. FEMS Microbiology Letters, 2003, 222, 39-43.	0.7	101
33	Norepinephrine-Induced Expression of the K99 Pilus Adhesin of EnterotoxigenicEscherichia coli. Biochemical and Biophysical Research Communications, 1997, 232, 682-686.	1.0	100
34	Production of an autoinducer of growth by norepinephrine culturedEscherichia coliO157:H7. FEMS Microbiology Letters, 1996, 139, 155-159.	0.7	99
35	Catecholamines Modulate Escherichia coli O157:H7 Adherence to Murine Cecal Mucosa. Shock, 2003, 20, 183-188.	1.0	99
36	Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiology, 2007, 7, 8.	1.3	96

#	Article	IF	CITATIONS
37	The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor. Gut Microbes, 2014, 5, 748-760.	4.3	91
38	Neuromodulation of enteropathogen internalization in Peyer's patches from porcine jejunum. Journal of Neuroimmunology, 2003, 141, 74-82.	1.1	89
39	Shock-induced modulation of lymphocyte reactivity: Suppression, habituation, and recovery. Life Sciences, 1987, 41, 1805-1814.	2.0	87
40	The microbial organ in the gut as a driver of homeostasis and disease. Medical Hypotheses, 2010, 74, 634-638.	0.8	86
41	Alpha and Beta Adrenergic Receptor Involvement in Catecholamine-Induced Growth of Gram-Negative Bacteria. Biochemical and Biophysical Research Communications, 1993, 190, 447-452.	1.0	85
42	Enhancement of In Vitro Growth of Pathogenic Bacteria by Norepinephrine: Importance of Inoculum Density and Role of Transferrin. Applied and Environmental Microbiology, 2006, 72, 5097-5099.	1.4	84
43	Increased IL-10 Production and HLA-DR Suppression in the Lungs of Injured Patients Precede the Development of Nosocomial Pneumonia. Shock, 2002, 17, 443-450.	1.0	81
44	Catecholamine inotropes as growth factors forStaphylococcus epidermidisand other coagulase-negative staphylococci. FEMS Microbiology Letters, 2001, 194, 163-169.	0.7	76
45	Adrenergic modulation ofEscherichia coliO157:H7 adherence to the colonic mucosa. American Journal of Physiology - Renal Physiology, 2004, 287, G1238-G1246.	1.6	73
46	Norepinephrine Augments Salmonella enterica-Induced Enteritis in a Manner Associated with Increased Net Replication but Independent of the Putative Adrenergic Sensor Kinases QseC and QseE. Infection and Immunity, 2010, 78, 372-380.	1.0	72
47	Innate and adaptive immune responses in a social conflict paradigm. Clinical Immunology and Immunopathology, 1990, 57, 137-147.	2.1	69
48	Norepinephrine Induced Growth and Expression of Virulence Associated Factors in Enterotoxigenic and Enterohemorrhagic Strains of Escherichia coli. Advances in Experimental Medicine and Biology, 1997, 412, 331-339.	0.8	66
49	Social stress-enhanced severity of Citrobacter rodentium-induced colitis is CCL2-dependent and attenuated by probiotic Lactobacillus reuteri. Mucosal Immunology, 2016, 9, 515-526.	2.7	65
50	Fluoxetine-induced alteration of murine gut microbial community structure: evidence for a microbial endocrinology-based mechanism of action responsible for fluoxetine-induced side effects. PeerJ, 2019, 7, e6199.	0.9	62
51	Strain-specific enhancement of splenic T cell mitogenesis and macrophage phagocytosis following peripheral axotomy. Journal of Neuroimmunology, 1991, 31, 1-8.	1.1	51
52	Mucosally-directed adrenergic nerves and sympathomimetic drugs enhance non-intimate adherence of Escherichia coli O157:H7 to porcine cecum and colon. European Journal of Pharmacology, 2006, 539, 116-124.	1.7	50
53	The role of catecholamines in Gram-negative sepsis. Medical Hypotheses, 1992, 37, 255-258.	0.8	49
54	Chapter 2 Microbial Endocrinology: Experimental Design Issues in the Study of Interkingdom Signalling in Infectious Disease. Advances in Applied Microbiology, 2008, 64, 75-105.	1.3	49

#	Article	IF	CITATIONS
55	Effects of in vitro adrenocorticotrophic hormone, cortisol and human recombinant interleukin-2 on porcine neutrophil migration and luminol-dependent chemiluminescence. Veterinary Immunology and Immunopathology, 1993, 39, 327-337.	0.5	47
56	Social Influences on Prevotella and the Gut Microbiome of Young Monkeys. Psychosomatic Medicine, 2017, 79, 888-897.	1.3	47
57	Systemic and pulmonary effector cell function after injury*. Critical Care Medicine, 2002, 30, 1322-1326.	0.4	45
58	Stress and microbial endocrinology: prospects for ruminant nutrition. Animal, 2010, 4, 1248-1257.	1.3	45
59	Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary Modulation of Behavior. PLoS ONE, 2016, 11, e0146406.	1.1	45
60	Influence of dietary catechols on the growth of enteropathogenic bacteria. International Journal of Food Microbiology, 2007, 119, 159-169.	2.1	44
61	Modulation of interleukin-1 production by macrophages following benzo(a)pyrene exposure. International Journal of Immunopharmacology, 1986, 8, 377-381.	1.1	43
62	Microbial endocrinology as a basis for improved l-DOPA bioavailability in Parkinson's patients treated for Helicobacter pylori. Medical Hypotheses, 2010, 74, 895-897.	0.8	41
63	A microbial endocrinology-based simulated small intestinal medium for the evaluation of neurochemical production by gut microbiota. FEMS Microbiology Ecology, 2018, 94, .	1.3	41
64	Alteration of Immune Competency by Number of Mice Housed per Cage. Annals of the New York Academy of Sciences, 1987, 496, 492-500.	1.8	39
65	Autonomic neurotransmitters modulate immunoglobulin A secretion in porcine colonic mucosa. Journal of Neuroimmunology, 2007, 185, 20-28.	1.1	39
66	The Biogenic Amine Tyramine Modulates the Adherence of Escherichia coli O157:H7 to Intestinal Mucosa. Journal of Food Protection, 2004, 67, 878-883.	0.8	38
67	The influence of mouse strain and housing on the immune response. Journal of Neuroimmunology, 1987, 17, 11-16.	1.1	37
68	Microbial Endocrinology: An Ongoing Personal Journey. Advances in Experimental Medicine and Biology, 2016, 874, 1-24.	0.8	37
69	Microbial endocrinology: Why the intersection of microbiology and neurobiology matters to poultry health. Poultry Science, 2017, 96, 2501-2508.	1.5	37
70	Dopamine production in Enterococcus faecium: A microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS ONE, 2018, 13, e0207038.	1.1	37
71	Evidence for PMAT- and OCT-like biogenic amine transporters in a probiotic strain of Lactobacillus: Implications for interkingdom communication within the microbiota-gut-brain axis. PLoS ONE, 2018, 13, e0191037.	1.1	37
72	The effect of stress on microbial growth. Animal Health Research Reviews, 2014, 15, 172-174.	1.4	36

#	Article	IF	CITATIONS
73	Catecholamine Inotrope Resuscitation of Antibioticâ€Damaged Staphylococci and Its Blockade by Specific Receptor Antagonists. Journal of Infectious Diseases, 2008, 197, 1044-1052.	1.9	33
74	Examination of the neuroendocrine basis for the social conflict-induced enhancement of immunity in mice. Physiology and Behavior, 1990, 48, 685-691.	1.0	31
75	Effect of in vivo administration of the carcinogen benzo(a)pyrene on interleukin-2 and interleukin-3 production. International Journal of Immunopharmacology, 1987, 9, 307-312.	1.1	30
76	Effects of Social Conflict on Immune Responses and E. coli Growth Within Closed Chambers in Mice. Physiology and Behavior, 1999, 67, 133-140.	1.0	30
77	Cytokines and the pathogenesis of nosocomial pneumonia. Surgery, 2001, 130, 602-611.	1.0	29
78	6-hydroxydopamine-mediated release of norepinephrine increases faecal excretion of <i>Salmonella enterica</i> serovar Typhimurium in pigs. Veterinary Research, 2010, 41, 68.	1.1	29
79	In Vivo Adaptation of Attenuated Salmonella typhimurium Results in Increased Growth Upon Exposure to Norepinephrine. Physiology and Behavior, 1999, 67, 359-364.	1.0	28
80	Norepinephrine represses the expression of <i>toxA</i> and the siderophore genes in <i>Pseudomonas aeruginosa</i> . FEMS Microbiology Letters, 2009, 299, 100-109.	0.7	28
81	Microbial endocrinology and nutrition: A perspective on new mechanisms by which diet can influence gut-to-brain communication. PharmaNutrition, 2013, 1, 35-39.	0.8	27
82	Microbial Endocrinology in the Pathogenesis of Infectious Disease. Microbiology Spectrum, 2016, 4, .	1.2	26
83	Symposium review: Microbial endocrinology—Why the integration of microbes, epithelial cells, and neurochemical signals in the digestive tract matters to ruminant health. Journal of Dairy Science, 2018, 101, 5619-5628.	1.4	24
84	Interactions Between Stress and Sex in Microbial Responses Within the Microbiota-Gut-Brain Axis in a Mouse Model. Psychosomatic Medicine, 2018, 80, 361-369.	1.3	23
85	Gut Microbiota and a Selectively Bred Taste Phenotype: A Novel Model of Microbiome-Behavior Relationships. Psychosomatic Medicine, 2016, 78, 610-619.	1.3	21
86	Induction of Gram-negative bacterial growth by neurochemical containing banana (Musa x) Tj ETQq0 0 0 rgBT	Overlock 1	.0 Tf 50 222 To
87	Altered Schaedler flora mice: A defined microbiota animal model to study the microbiota-gut-brain axis. Behavioural Brain Research, 2019, 356, 221-226.	1.2	20
88	Effects of In Vitro Electrical Stimulation on Enhancement and Suppression of Malignant Lymphoma Cell Proliferation. Journal of the National Cancer Institute, 1991, 83, 116-119.	3.0	19
89	Epinephrine as a Mediator of Pulmonary Neutrophil Sequestration. Shock, 2002, 18, 46-50.	1.0	19
90	NIH Workshop Report: sensory nutrition and disease. American Journal of Clinical Nutrition, 2021, 113, 232-245.	2.2	19

#	Article	IF	CITATIONS
91	Review: Microbial endocrinology: intersection of microbiology and neurobiology matters to swine health from infection to behavior. Animal, 2019, 13, 2689-2698.	1.3	18
92	Differential immunotoxic effects of the environmental chemical benzo[a]pyrene in young and aged mice. Mechanisms of Ageing and Development, 1985, 30, 333-341.	2.2	16
93	Reciprocal gut–brain evolutionary symbiosis provokes and amplifies the postinjury systemic inflammatory response syndrome. Surgery, 2009, 146, 950-954.	1.0	16
94	Production of the Neurotoxin Salsolinol by a Gut-Associated Bacterium and Its Modulation by Alcohol. Frontiers in Microbiology, 2018, 9, 3092.	1,5	16
95	Oral Treatments With Probiotics and Live Salmonella Vaccine Induce Unique Changes in Gut Neurochemicals and Microbiome in Chickens. Frontiers in Microbiology, 2019, 10, 3064.	1.5	16
96	Serotonin modulates Campylobacter jejuni physiology and in vitro interaction with the gut epithelium. Poultry Science, 2021, 100, 100944.	1.5	15
97	Assessment of a New Selective Chromogenic Bacillus cereus Group Plating Medium and Use of Enterobacterial Autoinducer of Growth for Cultural Identification of Bacillus Species. Journal of Clinical Microbiology, 2004, 42, 3795-3798.	1.8	14
98	Microbial Endocrinology Comes of Age. Microbe Magazine, 2009, 4, 169-175.	0.4	14
99	Generation and measurement of interleukin-1, interleukin-2, and mitogen levels in small volumes of whole blood. Journal of Clinical Laboratory Analysis, 1987, 1, 83-88.	0.9	12
100	Recommended housing conditions and test procedures can interact to obscure a significant experimental effect. Behavior Research Methods, 2005, 37, 651-656.	2.3	11
101	Japanese quail (Coturnix japonica) as a novel model to study the relationship between the avian microbiome and microbial endocrinology-based host-microbe interactions. Microbiome, 2021, 9, 38.	4.9	11
102	Maternal and Breast Milk Influences on the Infant Gut Microbiome, Enteric Health and Growth Outcomes of Rhesus Monkeys. Journal of Pediatric Gastroenterology and Nutrition, 2019, 69, 363-369.	0.9	10
103	Voluntary bingeâ€patterned alcohol drinking and sexâ€specific influences on monoamineâ€related neurochemical signatures in the mouse gut and brain. Alcoholism: Clinical and Experimental Research, 2021, 45, 996-1012.	1.4	10
104	Informal nutrition symposium: leveraging the microbiome (and the metabolome) for poultry production. Poultry Science, 2022, 101, 101588.	1.5	9
105	Proteobacteria abundance during nursing predicts physical growth and brain volume at one year of age in young rhesus monkeys. FASEB Journal, 2021, 35, e21682.	0.2	8
106	A neurochemical biogeography of the broiler chicken intestinal tract. Poultry Science, 2022, 101, 101671.	1.5	8
107	Microbial Endocrinology: A Personal Journey. , 2010, , 1-16.		7
108	Distinct Cecal and Fecal Microbiome Responses to Stress Are Accompanied by Sex- and Diet-Dependent Changes in Behavior and Gut Serotonin. Frontiers in Neuroscience, 2022, 16, 827343.	1.4	7

MARK LYTE

#	Article	IF	CITATIONS
109	Regulation of interleukin-1 production in murine macrophages and human monocytes by a normal physiological constituent. Life Sciences, 1986, 38, 1163-1170.	2.0	6
110	Staphylococci, Catecholamine Inotropes and Hospital-Acquired Infections. Advances in Experimental Medicine and Biology, 2016, 874, 183-199.	0.8	5
111	Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiology Letters, 1999, 172, 53-60.	0.7	5
112	Low <i>Lactobacilli</i> abundance and polymicrobial diversity in the lower reproductive tract of female rhesus monkeys do not compromise their reproductive success. American Journal of Primatology, 2017, 79, e22691.	0.8	4
113	Gut Microbial and Metabolic Profiling Reveal the Lingering Effects of Infantile Iron Deficiency Unless Treated with Iron. Molecular Nutrition and Food Research, 2021, 65, e2001018.	1.5	4
114	Reserpine improves Enterobacteriaceae resistance in chicken intestine via neuro-immunometabolic signaling and MEK1/2 activation. Communications Biology, 2021, 4, 1359.	2.0	4
115	Behavior Modification of Host by Microbes. , 2009, , 121-127.		3
116	Induction of Gram-negative bacterial growth by neurochemical containing banana (Musa x) Tj ETQq0 0 0 rgBT /O	verlock 10) Tf 50 462 T
117	Pyruvate is required for catecholamine-stimulated growth of different strains of <i>Campylobacter jejuni</i> . PeerJ, 2020, 8, e10011.	0.9	3
118	Microbial Endocrinology: An Evolution-Based Shared Mechanism Determining Microbiota's Influence on Health and Disease. Else-Kröner-Fresenius-Symposia, 2013, , 53-58.	0.1	2
119	Norepinephrine-Induced Growth and Alteration of Molecular Fingerprints in Escherichia coli O157:H7. Advances in Experimental Medicine and Biology, 1997, 412, 265-267.	0.8	2
120	PSII-16 Evidence for stratification of rumen wall microbial communities revealed by 16S rRNA based amplicon sequencing. Journal of Animal Science, 2019, 97, 226-227.	0.2	1
121	"Us vs. Them" Pair Housing: Effects on Body Weight, Open Field Behavior, and Gut Microbiota in Rats Selectively Bred on a Taste Phenotype. Physiology and Behavior, 2020, 223, 112975.	1.0	1

122	Lyticase Facilitates Mycobiome Resolution Without Disrupting Microbiome Fidelity in Primates. Journal of Surgical Research, 2021, 267, 336-341.	0.8	1
123	Variation in spatial organization of the gut microbiota along the longitudinal and transverse axes of the intestines. Archives of Microbiology, 2022, 204, .	1.0	1
124	SOCIAL CONFLICT STRESS, IMMUNE RESPONSES, AND RESISTANCE TO INFECTION. Shock, 1997, 7, 104.	1.0	0
125	561 The Stress Response Significantly Changes Microbial Populations in the Intestines and Increases Susceptibility to Enteric Infection. Gastroenterology, 2010, 138, S-78.	0.6	0

126Response to $\hat{a} \in \infty$ Pathophysiology and treatment of the systemic inflammatory response syndrome from
the perspective of evolutionary medicine $\hat{a} \in \mathbf{S}$ urgery, 2011, 149, 461-462.1.00

#	Article	IF	CITATIONS
127	Microbial Endocrinology. , 2016, , 89-108.		Ο
128	The Impact of Compulsive Ethanol Consumption on Gut and Brain Neurochemicals (P14-003-19). Current Developments in Nutrition, 2019, 3, nzz052.P14-003-19.	0.1	0
129	69 The ability of an artificial sweetener (Sucram®) to influence microbial community structure in the rumen papillae and content through the production of microbial-based neurochemicals. Journal of Animal Science, 2019, 97, 100-101.	0.2	0
130	Staphylococci, Catecholamine Inotropes and Hospital-Acquired Infections. , 2010, , 151-166.		0
131	Microbial Endocrinology in the Pathogenesis of Infectious Disease. , 0, , 137-168.		0
132	Exposure to a Virtual Environment Induces Biological and Microbiota Changes in Onset-of-Lay Hens. Frontiers in Virtual Reality, 0, 3, .	2.5	0