
Gonzalo Piñero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1682257/publications.pdf Version: 2024-02-01

CONZALO PIÃ+ERO

#	Article	IF	CITATIONS
1	Cyclic AMP synergistically enhances neuregulin-dependent ERK and Akt activation and cell cycle progression in Schwann cells. Glia, 2006, 53, 649-659.	4.9	89
2	Schwann Cell Dedifferentiation Is Independent of Mitogenic Signaling and Uncoupled to Proliferation. Journal of Biological Chemistry, 2010, 285, 31024-31036.	3.4	80
3	Nonâ€antagonistic relationship between mitogenic factors and cAMP in adult Schwann cell reâ€differentiation. Glia, 2009, 57, 947-961.	4.9	61
4	Requirement of cAMP Signaling for Schwann Cell Differentiation Restricts the Onset of Myelination. PLoS ONE, 2015, 10, e0116948.	2.5	52
5	Protein Kinase A-mediated Gating of Neuregulin-dependent ErbB2-ErbB3 Activation Underlies the Synergistic Action of cAMP on Schwann Cell Proliferation. Journal of Biological Chemistry, 2008, 283, 34087-34100.	3.4	48
6	A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Scientific Reports, 2016, 6, 31781.	3.3	46
7	Opposing Roles of pka and epac in the cAMP-Dependent Regulation of Schwann Cell Proliferation and Differentiation. PLoS ONE, 2013, 8, e82354.	2.5	43
8	From transplanting Schwann cells in experimental rat spinal cord injury to their transplantation into human injured spinal cord in clinical trials. Progress in Brain Research, 2017, 231, 107-133.	1.4	40
9	Schwann Cell Cultures: Biology, Technology and Therapeutics. Cells, 2020, 9, 1848.	4.1	32
10	cAMP signaling regulates DNA hydroxymethylation by augmenting the intracellular labile ferrous iron pool. ELife, 2017, 6, .	6.0	31
11	Phenotypic and Functional Characteristics of Human Schwann Cells as Revealed by Cell-Based Assays and RNA-SEQ. Molecular Neurobiology, 2018, 55, 6637-6660.	4.0	30
12	The properties of human Schwann cells: Lessons from in vitro culture and transplantation studies. Glia, 2020, 68, 797-810.	4.9	24
13	Sciatic nerve regeneration after traumatic injury using magnetic targeted adipose-derived mesenchymal stem cells. Acta Biomaterialia, 2021, 130, 234-247.	8.3	24
14	Human Schwann Cell Transplantation for Spinal Cord Injury: Prospects and Challenges in Translational Medicine. Frontiers in Cellular Neuroscience, 2021, 15, 690894.	3.7	23
15	Magnetic separation of peripheral nerve-resident cells underscores key molecular features of human Schwann cells and fibroblasts: an immunochemical and transcriptomics approach. Scientific Reports, 2020, 10, 18433.	3.3	22
16	Axon contact-driven Schwann cell dedifferentiation. Glia, 2017, 65, 864-882.	4.9	21
17	Vitamin C regulates Schwann cell myelination by promoting DNA demethylation of proâ€myelinating genes. Journal of Neurochemistry, 2021, 157, 1759-1773.	3.9	20
18	MPZL2 is a novel gene associated with autosomal recessive nonsyndromic moderate hearing loss. Human Genetics, 2018, 137, 479-486.	3.8	19

Gonzalo Piñero

#	Article	IF	CITATIONS
19	Magnetic-Activated Cell Sorting for the Fast and Efficient Separation of Human and Rodent Schwann Cells from Mixed Cell Populations. Methods in Molecular Biology, 2018, 1739, 87-109.	0.9	14
20	EGFP transgene: a useful tool to track transplanted bone marrow mononuclear cell contribution to peripheral remyelination. Transgenic Research, 2018, 27, 135-153.	2.4	9
21	Systemic Transplantation of Bone Marrow Mononuclear Cells Promotes Axonal Regeneration and Analgesia in a Model of Wallerian Degeneration. Transplantation, 2017, 101, 1573-1586.	1.0	8
22	To myelinate or not to myelinate: fine tuning cAMP signaling in Schwann cells to balance cell proliferation and differentiation. Neural Regeneration Research, 2015, 10, 1936.	3.0	8
23	Lithium Reversibly Inhibits Schwann Cell Proliferation and Differentiation Without Inducing Myelin Loss. Molecular Neurobiology, 2017, 54, 8287-8307.	4.0	7
24	Oscillatory cAMP signaling rapidly alters H3K4 methylation. Life Science Alliance, 2020, 3, e201900529.	2.8	7
25	Isolation, Culture, and Cryopreservation of Adult Rodent Schwann Cells Derived from Immediately Dissociated Teased Fibers. Methods in Molecular Biology, 2018, 1739, 49-66.	0.9	6
26	DMT1 iron uptake in the PNS: bridging the gap between injury and regeneration. Metallomics, 2015, 7, 1381-1389.	2.4	5
27	Scalable Differentiation and Dedifferentiation Assays Using Neuron-Free Schwann Cell Cultures. Methods in Molecular Biology, 2018, 1739, 213-232.	0.9	5
28	Fluorescent Detection of Merlin-deficient Schwann Cells and Primary Human Vestibular Schwannoma Cells Using Sodium Fluorescein. Otology and Neurotology, 2018, 39, 1053-1059.	1.3	4
29	Merlin-Deficient Schwann Cells Are More Susceptible to Radiation Injury than Normal Schwann Cells In Vitro. Journal of Neurological Surgery, Part B: Skull Base, 2022, 83, 228-236.	0.8	3
30	Heregulin Activity Assays for Residual Testing of Cell Therapy Products. Biological Procedures Online, 2021, 23, 22.	2.9	1
31	Busting the myth: more good than harm in transgenic cells. Neural Regeneration Research, 2019, 14, 967.	3.0	0