
Michael Volokh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1682242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2019, 58, 6138-6151.	7.2	205
2	A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie - International Edition, 2018, 57, 1186-1192.	7.2	161
3	Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 11075-11116.	5.2	142
4	Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag,) Tj ETQq0 0 0 rgBT /Overlock 1 Materials Chemistry A, 2013, 1, 1763-1769.	0 Tf 50 62 5.2	27 Td (Au)‑ 98
5	Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes. Nature Communications, 2020, 11, 4701.	5.8	87
6	Carbon Nitride/Reduced Graphene Oxide Film with Enhanced Electron Diffusion Length: An Efficient Photoâ€Electrochemical Cell for Hydrogen Generation. Advanced Energy Materials, 2018, 8, 1800566.	10.2	83
7	Fine-tuning of the Msn2/4–mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. Molecular Biology of the Cell, 2011, 22, 3127-3138.	0.9	75
8	Highly Efficient Polymeric Carbon Nitride Photoanode with Excellent Electron Diffusion Length and Hole Extraction Properties. Nano Letters, 2020, 20, 4618-4624.	4.5	63
9	Unraveling the Mechanisms of Electrocatalytic Oxygenation and Dehydrogenation of Organic Molecules to Valueâ€Added Chemicals Over a Ni–Fe Oxide Catalyst. Advanced Energy Materials, 2021, 11, 2101858.	10.2	51
10	Metal/semiconductor interfaces in nanoscale objects: synthesis, emerging properties and applications of hybrid nanostructures. Nanoscale Advances, 2020, 2, 930-961.	2.2	42
11	Controllable Synthesis of Carbon Nitride Films with Type-II Heterojunction for Efficient Photoelectrochemical Cells. Chemistry of Materials, 2020, 32, 5845-5853.	3.2	39
12	Solutionâ€Processable Carbon Nitride Polymers for Photoelectrochemical Applications. Small Methods, 2019, 3, 1900401.	4.6	38
13	Low ost Porous Ruthenium Layer Deposited on Nickel Foam as a Highly Active Universalâ€pH Electrocatalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 2780-2787.	3.6	34
14	Graphene oxide in carbon nitride: from easily processed precursors to a composite material with enhanced photoelectrochemical activity and long-term stability. Journal of Materials Chemistry A, 2019, 7, 11718-11723.	5.2	30
15	Carbon Nitrideâ€Based Photoanode with Enhanced Photostability and Water Oxidation Kinetics. Advanced Functional Materials, 2021, 31, 2101724.	7.8	29
16	A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie, 2018, 130, 1200-1206.	1.6	26
17	Freestanding Hierarchical Carbon Nitride/Carbon-Paper Electrode as a Photoelectrocatalyst for Water Splitting and Dye Degradation. ACS Applied Materials & Interfaces, 2019, 11, 29139-29146.	4.0	24
18	Nickel phosphide decorated with trace amount of platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 2006-2014.	2.5	23

MICHAEL VOLOKH

#	Article	lF	CITATIONS
19	Conserved Motifs in the Msn2-Activating Domain are Important for Msn2-Mediated Yeast Stress Response. Journal of Cell Science, 2012, 125, 3333-42.	1.2	22
20	Design of melem-based supramolecular assemblies for the synthesis of polymeric carbon nitrides with enhanced photocatalytic activity. Journal of Materials Chemistry A, 2021, 9, 17855-17864.	5.2	22
21	Carbon and Nitrogen Based Nanosheets as Fluorescent Probes with Tunable Emission. Small, 2018, 14, e1800516.	5.2	20
22	Layered Boron–Nitrogen–Carbon–Oxygen Materials with Tunable Composition as Lithiumâ€lon Battery Anodes. ChemSusChem, 2018, 11, 2912-2920.	3.6	19
23	Kohlenstoffnitridmaterialien für photochemische Zellen zur Wasserspaltung. Angewandte Chemie, 2019, 131, 6198-6211.	1.6	19
24	Supramolecular organization of melem for the synthesis of photoactive porous carbon nitride rods. Nanoscale, 2021, 13, 19511-19517.	2.8	18
25	Coating and Enhanced Photocurrent of Vertically Aligned Zinc Oxide Nanowire Arrays with Metal Sulfide Materials. ACS Applied Materials & amp; Interfaces, 2014, 6, 13594-13599.	4.0	16
26	Electrophoretic deposition of supramolecular complexes for the formation of carbon nitride films. Sustainable Energy and Fuels, 2020, 4, 3879-3883.	2.5	14
27	Charge Transfer Dynamics in CdS and CdSe@CdS Based Hybrid Nanorods Tipped with Both PbS and Pt. Journal of Physical Chemistry C, 2016, 120, 15453-15459.	1.5	13
28	Coordinationâ€Directed Growth of Transitionâ€Metal–Crystalline arbon Composites with Controllable Metal Composition. Angewandte Chemie - International Edition, 2019, 58, 14964-14968.	7.2	12
29	Light on peroxide. Nature Catalysis, 2021, 4, 350-351.	16.1	12
30	A Simple Approach for the Formation of Oxides, Sulfides, and Oxide–Sulfide Hybrid Nanostructures. Israel Journal of Chemistry, 2012, 52, 1081-1089.	1.0	10
31	Molten state synthesis of nickel phosphides: mechanism and composition-activity correlation for electrochemical applications. Journal of Materials Chemistry A, 2021, 9, 27629-27638.	5.2	9
32	Electrophoretic deposition of single-source precursors as a general approach for the formation of hybrid nanorod array heterostructures. Journal of Colloid and Interface Science, 2018, 515, 221-231.	5.0	8
33	Highly luminescent CuGa _x In _{1â^'x} S _y Se _{2â^'y} nanocrystals from organometallic single-source precursors. Journal of Materials Chemistry C, 2015, 3, 4657-4662.	2.7	7
34	Synthesis of metal-free lightweight materials with sequence-encoded properties. Journal of Materials Chemistry A, 2020, 8, 8752-8760.	5.2	7
35	Design of Hierarchal 3D Metal Oxide Structures for Water Oxidation and Purification. Advanced Sustainable Systems, 2018, 2, 1800001.	2.7	6
36	Calcareous Foraminiferal Shells as a Template for the Formation of Hierarchal Structures of Inorganic Nanomaterials. ACS Applied Materials & Temp; Interfaces, 2019, 11, 6456-6462.	4.0	6

MICHAEL VOLOKH

#	Article	IF	CITATIONS
37	Mediated Growth of Carbon Nitride Films via Spray oated Seeding Layers for Photoelectrochemical Applications. Advanced Sustainable Systems, 0, , 2100005.	2.7	6
38	Insight into the formation mechanism of PtCu alloy nanoparticles. CrystEngComm, 2014, 16, 9493-9500.	1.3	5
39	A Surface Study of Ultrathin Ceria Nanoparticles Decorated with Transitionâ€Metal Ions. Particle and Particle Systems Characterization, 2019, 36, 1800452.	1.2	3
40	Selective Growth of Metal Sulfide, Metal, and Metal-Alloy on 2D CdS Nanoplates. Frontiers in Materials, 2020, 6, .	1.2	3
41	Chemoselective Insertion of a CdS Rod between Au/Metal-Oxide Heterodimers. Chemistry of Materials, 2021, 33, 4701-4708.	3.2	3
42	Dynamics of the nanocrystal structure and composition in growth solutions monitored by <i>in situ</i> lab-scale X-ray diffraction. Nanoscale, 2021, 13, 19076-19084.	2.8	3
43	Coordinationâ€Directed Growth of Transitionâ€Metal–Crystallineâ€Carbon Composites with Controllable Metal Composition. Angewandte Chemie, 2019, 131, 15106-15110.	1.6	2
44	Formation of Copper Oxide Nanotextures on Porous Calcium Carbonate Templates for Water Treatment. Molecules, 2021, 26, 6067.	1.7	2
45	Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design. Chemistry of Materials, 0, , .	3.2	1
46	Frontispiece: A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie - International Edition, 2018, 57, .	7.2	0
47	Frontispiz: A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties. Angewandte Chemie, 2018, 130, .	1.6	Ο
48	Synthesis and Photoelectrochemical Activity of αâ€Fe ₂ 0 ₃ â^CdFe ₂ 0 ₄ Hybrid Structure for the Water Oxidation Reaction. Israel Journal of Chemistry, 2023, 63, .	1.0	0
49	Water-splitting Photoelectrochemical Cells Based on Carbon Nitride Materials: Progress through Improved Deposition Techniques. , 0, , .		0
50	Water-splitting Photoelectrochemical Cells Based on Carbon Nitride Materials: Progress through Improved Deposition Techniques. , 0, , .		0