Yuan Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1682235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process. Environmental Science & Technology, 2015, 49, 12941-12950.	4.6	954
2	Insight into activated carbon from different kinds of chemical activating agents: A review. Science of the Total Environment, 2020, 746, 141094.	3.9	278
3	Activation of peroxymonosulfate by phenols: Important role of quinone intermediates and involvement of singlet oxygen. Water Research, 2017, 125, 209-218.	5.3	237
4	Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chemical Engineering Journal, 2022, 429, 132387.	6.6	206
5	Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: Strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. Journal of Colloid and Interface Science, 2018, 527, 202-213.	5.0	164
6	Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb(II), Cu(II) and Cr(VI) removals. Waste Management, 2018, 79, 625-637.	3.7	102
7	Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7 and KOH. Chemical Engineering Journal, 2013, 232, 582-590.	6.6	90
8	Kinetics of Oxidation of Iodide (I [–]) and Hypoiodous Acid (HOI) by Peroxymonosulfate (PMS) and Formation of Iodinated Products in the PMS/I [–] /NOM System. Environmental Science and Technology Letters, 2017, 4, 76-82.	3.9	73
9	High-yield and high-performance porous biochar produced from pyrolysis of peanut shell with low-dose ammonium polyphosphate for chloramphenicol adsorption. Journal of Cleaner Production, 2020, 264, 121516.	4.6	70
10	Chlorination of bisphenol S: Kinetics, products, and effect of humic acid. Water Research, 2018, 131, 208-217.	5.3	64
11	Transformation of Flame Retardant Tetrabromobisphenol A by Aqueous Chlorine and the Effect of Humic Acid. Environmental Science & Technology, 2016, 50, 9608-9618.	4.6	62
12	Preparation of highly developed mesoporous activated carbon by H4P2O7 activation and its adsorption behavior for oxytetracycline. Powder Technology, 2013, 249, 54-62.	2.1	46
13	Self-activation of biochar from furfural residues by recycled pyrolysis gas. Waste Management, 2018, 77, 312-321.	3.7	40
14	Transformation of phenolic compounds by peroxymonosulfate in the presence of iodide and formation of iodinated aromatic products. Chemical Engineering Journal, 2018, 335, 855-864.	6.6	38
15	Facile synthesis of high-surface area mesoporous biochar for energy storage via in-situ template strategy. Materials Letters, 2018, 230, 183-186.	1.3	34
16	Optimization of high surface area activated carbon production from Enteromorpha prolifra with low-dose activating agent. Fuel Processing Technology, 2015, 132, 180-187.	3.7	26
17	Activated carbons with well-developed mesoporosity prepared by activation with different alkali salts. Materials Letters, 2015, 146, 34-36.	1.3	24
18	Facile synthesis of hierarchical porous carbon material by potassium tartrate activation for chloramphenicol removal. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 141-148.	2.7	22

Yuan Gao

#	Article	IF	CITATIONS
19	Preparation of well-developed mesoporous activated carbon with high yield by ammonium polyphosphate activation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66, 394-399.	2.7	20
20	Facile one-step synthesis of functionalized biochar from sustainable prolifera-green-tide source for enhanced adsorption of copper ions. Journal of Environmental Sciences, 2018, 73, 185-194.	3.2	18
21	Edge defects-enriched porous carbon derived from food waste for high-performance supercapacitors. Materials Letters, 2019, 253, 74-77.	1.3	15
22	Synthesis of honeycomb-like hierarchical porous carbon via molten salt pyrolysis in a novel sequencing integration system for high-performance supercapacitors. Microporous and Mesoporous Materials, 2019, 278, 195-205.	2.2	15
23	lodine Atom or Hypoiodous Acid? Comment on "Rapid Selective Circumneutral Degradation of Phenolic Pollutants Using Peroxymonosulfate–lodide Metal-Free Oxidation: Role of Iodine Atoms― Environmental Science & Technology, 2017, 51, 9410-9411.	4.6	8
24	Application for oxytetracycline wastewater pretreatment by Fe-C-Ni catalytic cathodic-anodic-electrolysis granular fillers from rare-earth tailings. Ecotoxicology and Environmental Safety, 2018, 164, 641-647.	2.9	8
25	Evaluation of pyrolysis residue of oil sludge for recycling as bed material. Canadian Journal of Chemical Engineering, 2020, 98, 465-474.	0.9	7