Gianguido Ramis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1682020/publications.pdf

Version: 2024-02-01

70961 51492 7,472 95 41 86 citations h-index g-index papers 99 99 99 5617 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photoreforming of model carbohydrate mixtures from pulping industry wastewaters. International Journal of Hydrogen Energy, 2022, , .	3.8	4
2	Effect of Metal Cocatalysts and Operating Conditions on the Product Distribution and the Productivity of the CO ₂ Photoreduction. Industrial & Engineering Chemistry Research, 2022, 61, 2963-2972.	1.8	10
3	Photocatalytic Reduction of Nitrates and Combined Photodegradation with Ammonium. Catalysts, 2022, 12, 321.	1.6	3
4	Low Metal Loading (Au, Ag, Pt, Pd) Photo-Catalysts Supported on TiO2 for Renewable Processes. Materials, 2022, 15, 2915.	1.3	6
5	Design of efficient photocatalytic processes for the production of hydrogen from biomass derived substrates. International Journal of Hydrogen Energy, 2021, 46, 12105-12116.	3.8	36
6	Capture and release mechanism of La ions by new polyamine-based organoclays: A model system for rare-earths recovery in urban mining process. Journal of Environmental Chemical Engineering, 2021, 9, 104730.	3.3	7
7	Flame Pyrolysis Synthesis of Mixed Oxides for Glycerol Steam Reforming. Materials, 2021, 14, 652.	1.3	4
8	Capture Mechanism of La and Cu Ions in Mixed Solutions by Clay and Organoclay. Industrial & Engineering Chemistry Research, 2021, 60, 6803-6813.	1.8	10
9	Kinetic Modelling of Biodegradability Data of Commercial Polymers Obtained under Aerobic Composting Conditions. Eng, 2021, 2, 54-68.	1.2	17
10	Photocatalytic Selective Oxidation of Ammonia in a Semi-Batch Reactor: Unravelling the Effect of Reaction Conditions and Metal Co-Catalysts. Catalysts, 2021, 11, 209.	1.6	12
11	Feasibility Study of the Solar-Promoted Photoreduction of CO2 to Liquid Fuels with Direct or Indirect Use of Renewable Energy Sources. Energies, 2021, 14, 2804.	1.6	0
12	Photo-Oxidation of Ammonia to Molecular Nitrogen in Water under UV, Vis and Sunlight Irradiation. Catalysts, 2021, 11, 975.	1.6	3
13	Reduced Graphene Oxide Membranes as Potential Self-Assembling Filter for Wastewater Treatment. Minerals (Basel, Switzerland), 2021, 11, 15.	0.8	10
14	Rare Earths (La, Y, and Nd) Adsorption Behaviour towards Mineral Clays and Organoclays: Monoionic and Trionic Solutions. Minerals (Basel, Switzerland), 2021, 11, 30.	0.8	13
15	Influence of the Degradation Medium on Water Uptake, Morphology, and Chemical Structure of Poly(Lactic Acid)-Sisal Bio-Composites. Materials, 2020, 13, 3974.	1.3	17
16	Photoreforming of Glucose over CuO/TiO2. Catalysts, 2020, 10, 477.	1.6	24
17	Semiâ€Batch Photocatalytic Reduction of Nitrates: Role of Process Conditions and Coâ€Catalysts. ChemCatChem, 2019, 11, 4642-4652.	1.8	20
18	Catalytic, Photocatalytic, and Electrocatalytic Processes for the Valorization of CO2. Catalysts, 2019, 9, 765.	1.6	6

#	Article	IF	CITATIONS
19	Structured Monolithic Catalysts vs. Fixed Bed for the Oxidative Dehydrogenation of Propane. Materials, 2019, 12, 884.	1.3	2
20	High pressure CO2 photoreduction using Au/TiO2: unravelling the effect of co-catalysts and of titania polymorphs. Catalysis Science and Technology, 2019, 9, 2253-2265.	2.1	34
21	Steam reforming of ethanol over Ni/MgAl2O4 catalysts. International Journal of Hydrogen Energy, 2019, 44, 952-964.	3.8	67
22	New Insights into the Role of the Synthesis Procedure on the Performance of Co-Based Catalysts for Ethanol Steam Reforming. Topics in Catalysis, 2018, 61, 1734-1745.	1.3	15
23	Conceptual design and feasibility assessment of photoreactors for solar energy storage. Solar Energy, 2018, 172, 225-231.	2.9	14
24	Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application. Catalysts, 2018, 8, 623.	1.6	13
25	Photoreduction of nitrates from waste and drinking water. Materials Today: Proceedings, 2018, 5, 17404-17413.	0.9	11
26	High Pressure Photoreduction of CO2: Effect of Catalyst Formulation, Hole Scavenger Addition and Operating Conditions. Catalysts, 2018, 8, 430.	1.6	41
27	Process Intensification by Exploiting Diluted 2nd Generation Bio-ethanol in the Low-Temperature Steam Reforming Process. Topics in Catalysis, 2018, 61, 1832-1841.	1.3	10
28	Ethylene production via catalytic dehydration of diluted bioethanol: A step towards an integrated biorefinery. Applied Catalysis B: Environmental, 2017, 210, 407-420.	10.8	49
29	Innovative photoreactors for unconventional photocatalytic processes: the photoreduction of CO2 and the photo-oxidation of ammonia. Rendiconti Lincei, 2017, 28, 151-158.	1.0	22
30	Ethylene production from diluted bioethanol solutions. Canadian Journal of Chemical Engineering, 2017, 95, 1752-1759.	0.9	21
31	Molecular level interactions in brushite-aminoacids composites. Materials Science and Engineering C, 2017, 70, 721-727.	3.8	21
32	Photocatalytic Processes for the Abatement of N-Containing Pollutants from Waste Water. Part 1: Inorganic Pollutants. Journal of Nanoscience and Nanotechnology, 2017, 17, 3632-3653.	0.9	23
33	Catalytic and Photocatalytic Processes for the Abatement of N-Containing Pollutants from Wastewater. Part 2: Organic Pollutants. Journal of Nanoscience and Nanotechnology, 2017, 17, 3654-3672.	0.9	23
34	Syngas production via steam reforming of bioethanol over Ni–BEA catalysts: A BTL strategy. International Journal of Hydrogen Energy, 2016, 41, 16878-16889.	3.8	26
35	Hydrogen storage over metal-doped activated carbon. International Journal of Hydrogen Energy, 2015, 40, 7609-7616.	3.8	44
36	Metal Dispersion and Interaction with the Supports in the Coke Production Over Ethanol Steam Reforming Catalysts. , 2015, , 695-711.		10

3

#	Article	IF	CITATIONS
37	TiO2-supported catalysts for the steam reforming of ethanol. Applied Catalysis A: General, 2014, 477, 42-53.	2.2	46
38	Silica and zirconia supported catalysts for the low-temperature ethanol steam reforming. Applied Catalysis B: Environmental, 2014, 150-151, 257-267.	10.8	79
39	Redox properties of Co- and Cu-based catalysts for the steam reforming of ethanol. International Journal of Hydrogen Energy, 2013, 38, 3213-3225.	3.8	41
40	Quantification of "delivered―H2 by a volumetric method to test H2 storage materials. International Journal of Hydrogen Energy, 2013, 38, 13309-13317.	3.8	5
41	Synthesis and characterization of poly-l-leucine initialized and immobilized by rehydrated hydrotalcite: understanding stability and the nature of interaction. Physical Chemistry Chemical Physics, 2013, 15, 15645.	1.3	10
42	Nickel Catalysts Supported Over TiO ₂ , SiO ₂ and ZrO ₂ for the Steam Reforming of Glycerol. ChemCatChem, 2013, 5, 294-306.	1.8	79
43	Ni/SiO2 and Ni/ZrO2 catalysts for the steam reforming of ethanol. Applied Catalysis B: Environmental, 2012, 117-118, 384-396.	10.8	114
44	Novel nanohybrid materials based on l-leucine on hydrotalcite clays: Asymmetric epoxidation reaction of chalcona. Catalysis Today, 2011, 172, 48-52.	2.2	4
45	A study on catalytic combustion of chlorobenzenes. Catalysis Today, 2011, 169, 3-9.	2.2	48
46	Zinc–aluminum hydrotalcites as precursors of basic catalysts: Preparation, characterization and study of the activation of methanol. Catalysis Today, 2010, 152, 104-109.	2.2	66
47	Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming: Ni–Co–Zn–Al catalysts from hydrotalcite-like precursors. International Journal of Hydrogen Energy, 2010, 35, 5356-5366.	3 . 8	125
48	Ni-Co-Zn-Al Catalysts From Hydrotalcite-Like Precursors for Hydrogen Production by Ethanol Steam Reforming. , 2010, , .		1
49	Bulk and surface properties of commercial kaolins. Applied Clay Science, 2010, 48, 446-454.	2.6	92
50	Hydrogen from alcohols: IR and flow reactor studies. Catalysis Today, 2009, 143, 2-8.	2.2	41
51	Reaction path of ethanol and acetic acid steam reforming over Ni–Zn–Al catalysts. Flow reactor studies. Chemical Engineering Journal, 2009, 153, 43-49.	6.6	47
52	An FTIR study of the dispersed Ni species on Ni-YSZ catalysts. Applied Catalysis A: General, 2009, 353, 137-143.	2.2	32
53	Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcite-like precursors: Catalyst characterization, catalytic activity and reaction path. Applied Catalysis A: General, 2009, 355, 83-93.	2.2	127
54	Preferential CO oxidation (CO-PROX) over CuO-ZnO/TiO2 catalysts. Applied Catalysis A: General, 2008, 344, 165-174.	2.2	43

#	Article	IF	CITATIONS
55	Gel derived niobium–silicon mixed oxides: Characterization and catalytic activity for cyclooctene epoxidation. Applied Catalysis A: General, 2008, 347, 179-185.	2.2	37
56	Cobalt–silicon mixed oxide nanocomposites by modified sol–gel method. Journal of Solid State Chemistry, 2007, 180, 3341-3350.	1.4	83
57	Catalytic abatement of NOx: Chemical and mechanistic aspects. Catalysis Today, 2005, 107-108, 139-148.	2.2	150
58	An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3/Al2O3 SCR catalysts. Journal of Molecular Catalysis A, 2004, 215, 161-167.	4.8	100
59	Redox and acid reactivity of wolframyl centers on oxide carriers: Brønsted, Lewis and redox sites. Applied Catalysis A: General, 2001, 216, 181-194.	2.2	64
60	An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3-TiO2 SCR catalysts. Applied Catalysis B: Environmental, 2001, 30, 101-110.	10.8	147
61	An FT-IR study of the adsorption of urea and ammonia over V2O5–MoO3–TiO2 SCR catalysts. Applied Catalysis B: Environmental, 2000, 27, L145-L151.	10.8	222
62	Characterization and Reactivity of V2O5–MoO3/TiO2 De-NOx SCR Catalysts. Journal of Catalysis, 1999, 187, 419-435.	3.1	326
63	A study of anatase–supported Mn oxide as catalysts for 2-propanol oxidation. Applied Catalysis B: Environmental, 1999, 22, 249-259.	10.8	90
64	Chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 1998, 18, 1-36.	10.8	1,981
65	An FT-IR and flow reactor study of the selective catalytic oxy-dehydrogenation of C3 alcohols on Mn3O4. Applied Catalysis A: General, 1998, 166, 75-88.	2.2	45
66	Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts. Catalysis Today, 1998, 42, 101-116.	2.2	129
67	Ammonia Adsorption and Oxidation on Cu/Mg/Al Mixed Oxide Catalysts PreparedviaHydrotalcite-Type Precursors. Langmuir, 1997, 13, 4628-4637.	1.6	51
68	An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides. Applied Catalysis B: Environmental, 1997, 13, 45-58.	10.8	292
69	Characterization and composition of commercial V2O5&z.sbndWO3&z.sbndTiO2 SCR catalysts. Applied Catalysis B: Environmental, 1996, 10, 299-311.	10.8	161
70	Conversion of 1-butene over WO3-TiO2 Catalysts. Applied Catalysis A: General, 1994, 107, 249-266.	2.2	58
71	FT-IR study of the interaction of magnesium ferrite with SO2. Catalysis Letters, 1994, 23, 353-360.	1.4	18
72	FT Raman and FTIR studies of titanias and metatitanate powders. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3181.	1.7	199

#	Article	IF	CITATIONS
73	Spectroscopic characterization of magnesium vanadate catalysts. Part 2.—FTIR study of the surface properties of pure and mixed-phase powders. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1293-1299.	1.7	21
74	Characterization of silicated anatase powders. Journal of Materials Chemistry, 1994, 4, 1755.	6.7	23
75	On the effect of dopants and additives on the state of surface vanadyl centers of vanadia-titania catalysts. Catalysis Letters, 1993, 18, 299-303.	1.4	81
76	Thermal stability of vanadia–titania catalysts. Journal of Materials Chemistry, 1993, 3, 1239-1249.	6.7	89
77	Potassium doping of vanadia/titania de-NOxing catalysts: Surface characterisation and reactivity study. Applied Catalysis B: Environmental, 1993, 3, 13-35.	10.8	106
78	Surface sites on spinel-type and corundum-type metal oxide powders. Langmuir, 1993, 9, 1492-1499.	1.6	180
79	Characterization of the surface properties of polycrystalune WO3. Journal of Molecular Catalysis, 1990, 61, 319-331.	1.2	57
80	FT-IR Study of Selective Oxidation Intermediates of Benzene on The Surface of Vanadia-Titania "Monolayer―Catalysts. Studies in Surface Science and Catalysis, 1990, 55, 825-831.	1.5	4
81	Fourier transform infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on TiO2 anatase. Applied Catalysis, 1990, 64, 243-257.	1.1	223
82	Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction. Applied Catalysis, 1990, 64, 259-278.	1.1	405
83	On the mechanism of the selective oxidation of C4 linear hydrocarbons to maleic anhydride: An FT-IR study of the adsorption and oxidation of 1,3-butadiene on vanadia-titania. Journal of Molecular Catalysis, 1989, 55, 1-11.	1.2	26
84	FT-IR study of the surface properties of polycrystalline vanadia. Journal of Molecular Catalysis, 1989, 50, 231-240.	1.2	101
85	FTIR spectra of adsorbed n-butylamine. Journal of Molecular Structure, 1989, 193, 93-100.	1.8	41
86	Surface Chemistry and Structure of Ultrafine Silicon Carbide: An FT-IR Study. Journal of the American Ceramic Society, 1989, 72, 1692-1697.	1.9	53
87	Adsorption and oligomerization of isobutene on oxide catalyst surfaces. A Fourier-transform infrared study. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 137.	1.0	19
88	FT-IR and FT-FIR studies of vanadium, molybdenum and tungsten oxides supported on different carriers. Mikrochimica Acta, 1988, 95, 57-61.	2.5	10
89	Surface oxidation of high-surface-area silicon carbide: FT-IR studies. Mikrochimica Acta, 1988, 95, 75-77.	2.5	5
90	Surface acidity of the layered pyrophosphates of quadrivalent Ti, Zr, Ge, and Sn and their activity in some acid-catalysed reactions. Journal of the Chemical Society Dalton Transactions, 1988, , 881.	1.1	27

#	Article	IF	CITATIONS
91	FT-IR Study of the Dispersion of the Supported Phase on MoO ₃ -TiO ₂ Catalysts. Zeitschrift Fur Physikalische Chemie, 1987, 153, 189-200.	1.4	22
92	FT-IR study of the reactivity of molybdenum oxide supported on titania. Applied Catalysis, 1987, 32, 305-313.	1.1	15
93	Structural effects on the adsorption of alcohols on titanium dioxides. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 1591.	1.0	80
94	FT-i.r. study of molecular interactions of olefins with oxide surfaces. Spectrochimica Acta Part A: Molecular Spectroscopy, 1987, 43, 489-496.	0.1	51
95	FT-IR study of the surface properties of K2O-TiO2. Applied Surface Science, 1986, 27, 114-126.	3.1	26