Marco Sandri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1681661/publications.pdf

Version: 2024-02-01

91712 57631 22,083 73 44 69 citations h-index g-index papers 76 76 76 32585 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Implications of mitochondrial fusion and fission in skeletal muscle mass and health. Seminars in Cell and Developmental Biology, 2023, 143, 46-53.	2.3	12
2	Iron supplementation is sufficient to rescue skeletal muscle mass and function in cancer cachexia. EMBO Reports, 2022, 23, e53746.	2.0	26
3	MYTHO: A novel regulator of autophagy and skeletal muscle health. FASEB Journal, 2022, 36, .	0.2	O
4	D230025D16Rik: A Novel Regulator of Muscle Cell Differentiation. FASEB Journal, 2022, 36, .	0.2	0
5	Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics. , 2022, 1 , .		22
6	Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nature Communications, 2021, 12, 330.	5.8	355
7	Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. Journal of Clinical Investigation, 2021, 131, .	3.9	34
8	Editorial: Autophagy and Mitophagy in Skeletal Muscle Health and Disease. Frontiers in Physiology, 2021, 12, 703458.	1.3	0
9	Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Science Translational Medicine, 2021, 13, .	5.8	58
10	UBE2L3, a Partner of MuRF1/TRIM63, Is Involved in the Degradation of Myofibrillar Actin and Myosin. Cells, 2021, 10, 1974.	1.8	9
11	Role of autophagy in muscle disease. Molecular Aspects of Medicine, 2021, 82, 101041.	2.7	26
12	Skeletal muscle mTORC1 regulates neuromuscular junction stability. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 208-225.	2.9	43
13	Sestrin prevents atrophy of disused and aging muscles by integrating anabolic and catabolic signals. Nature Communications, 2020, 11, 189.	5.8	87
14	cAMPâ€dependent protein kinase inhibits FoxO activity and regulates skeletal muscle plasticity in mice. FASEB Journal, 2020, 34, 12946-12962.	0.2	27
15	Effects of acute and chronic strength training on skeletal muscle autophagy in frail elderly men and women. Experimental Gerontology, 2020, 142, 111122.	1,2	4
16	Signaling Pathways That Control Muscle Mass. International Journal of Molecular Sciences, 2020, 21, 4759.	1.8	104
17	Nutritional intervention with cyanidin hinders the progression of muscular dystrophy. Cell Death and Disease, 2020, 11, 127.	2.7	15
18	DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nature Communications, 2019, 10, 2576.	5.8	274

#	Article	IF	CITATIONS
19	Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle. Cell Reports, 2019, 26, 3784-3797.e8.	2.9	55
20	Insulin/IGF1 signalling mediates the effects of β ₂ â€adrenergic agonist on muscle proteostasis and growth. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 455-475.	2.9	33
21	INSL3 in the muscolo-skeletal system. Molecular and Cellular Endocrinology, 2019, 487, 12-17.	1.6	15
22	Muscleâ€specific Perilipin2 downâ€regulation affects lipid metabolism and induces myofiber hypertrophy. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 95-110.	2.9	20
23	Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO Journal, 2018, 37, .	3.5	139
24	Skeletal Muscle-Specific Methyltransferase METTL21C Trimethylates p97 and Regulates Autophagy-Associated Protein Breakdown. Cell Reports, 2018, 23, 1342-1356.	2.9	41
25	In mammalian skeletal muscle, phosphorylation of TOMM22 by protein kinase CSNK2/CK2 controls mitophagy. Autophagy, 2018, 14, 311-335.	4.3	51
26	Loss of the novel Vcp (valosin containing protein) interactor Washc4 interferes with autophagy-mediated proteostasis in striated muscle and leads to myopathy <i>in vivo</i> . Autophagy, 2018, 14, 1911-1927.	4.3	35
27	Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence. Cell Metabolism, 2017, 25, 1374-1389.e6.	7.2	388
28	Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metabolism, 2017, 25, 182-196.	7.2	250
29	Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival. Nature Communications, 2017, 8, 1707.	5.8	86
30	FoxOâ€dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. Journal of Physiology, 2017, 595, 1143-1158.	1.3	75
31	Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. International Journal of Molecular Sciences, 2016, 17, 187.	1.8	21
32	Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	1.9	27
33	Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass. JCI Insight, 2016, 1, .	2.3	38
34	Perilipin 2 and Age-Related Metabolic Diseases: A New Perspective. Trends in Endocrinology and Metabolism, 2016, 27, 893-903.	3.1	102
35	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
36	Protein breakdown in cancer cachexia. Seminars in Cell and Developmental Biology, 2016, 54, 11-19.	2.3	114

#	Article	IF	CITATIONS
37	Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet. Acta Neuropathologica, 2016, 132, 127-144.	3.9	74
38	Enhanced exercise and regenerative capacity in a mouse model that violates size constraints of oxidative muscle fibres. ELife, 2016, 5, .	2.8	47
39	Symmorphosis through Dietary Regulation: A Combinatorial Role for Proteolysis, Autophagy and Protein Synthesis in Normalising Muscle Metabolism and Function of Hypertrophic Mice after Acute Starvation. PLoS ONE, 2015, 10, e0120524.	1.1	10
40	New Pathogenetic Mechanisms that Link Autophagy to Pompe Disease. Journal of Neuromuscular Diseases, 2015, 2, S9-S9.	1.1	1
41	The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage. Cell Metabolism, 2015, 21, 834-844.	7.2	350
42	BMPs and the muscle–bone connection. Bone, 2015, 80, 37-42.	1.4	34
43	Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy. Nature Communications, 2015, 6, 6670.	5.8	522
44	The Mitochondrial Calcium Uniporter Controls Skeletal Muscle Trophism InÂVivo. Cell Reports, 2015, 10, 1269-1279.	2.9	170
45	PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skeletal Muscle, 2015, 5, 9.	1.9	136
46	Histone Deacetylase 6 Is a FoxO Transcription Factor-dependent Effector in Skeletal Muscle Atrophy. Journal of Biological Chemistry, 2015, 290, 4215-4224.	1.6	34
47	Mitochondrial Quality Control and Muscle Mass Maintenance. Frontiers in Physiology, 2015, 6, 422.	1.3	290
48	Oxidative Damage and Autophagy in the Human Trabecular Meshwork as Related with Ageing. PLoS ONE, 2014, 9, e98106.	1.1	51
49	Haptoglobin Is Required to Prevent Oxidative Stress and Muscle Atrophy. PLoS ONE, 2014, 9, e100745.	1.1	50
50	Aggresomeââ,¬â€œAutophagy Involvement in a Sarcopenic Patient with Rigid Spine Syndrome and a p.C150R Mutation in FHL1 Gene. Frontiers in Aging Neuroscience, 2014, 6, 215.	1.7	18
51	Phosphorylation of NBR1 by GSK3 modulates protein aggregation. Autophagy, 2014, 10, 1036-1053.	4.3	49
52	Autophagy Impairment in Muscle Induces Neuromuscular Junction Degeneration and Precocious Aging. Cell Reports, 2014, 8, 1509-1521.	2.9	309
53	Regulation and involvement of the ubiquitin ligases in muscle atrophy. Free Radical Biology and Medicine, 2014, 75, S4.	1.3	6
54	Deficient nitric oxide signalling impairs skeletal muscle growth and performance: involvement of mitochondrial dysregulation. Skeletal Muscle, 2014, 4, 22.	1.9	58

#	Article	IF	CITATIONS
55	Long-Term High-Level Exercise Promotes Muscle Reinnervation With Age. Journal of Neuropathology and Experimental Neurology, 2014, 73, 284-294.	0.9	136
56	Proteotoxicity: An underappreciated pathology in cardiac disease. Journal of Molecular and Cellular Cardiology, 2014, 71, 3-10.	0.9	55
57	Propeptide-Mediated Inhibition of Myostatin Increases Muscle Mass Through Inhibiting Proteolytic Pathways in Aged Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1049-1059.	1.7	31
58	$TGF\hat{l}^2$ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends in Endocrinology and Metabolism, 2014, 25, 464-471.	3.1	144
59	Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. International Journal of Biochemistry and Cell Biology, 2013, 45, 2121-2129.	1.2	508
60	BMP signaling controls muscle mass. Nature Genetics, 2013, 45, 1309-1318.	9.4	379
61	Mechanisms regulating skeletal muscle growth and atrophy. FEBS Journal, 2013, 280, 4294-4314.	2.2	1,115
62	Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Molecular Medicine, 2013, 5, 870-890.	3.3	96
63	Cellular and molecular mechanisms of muscle atrophy. DMM Disease Models and Mechanisms, 2013, 6, 25-39.	1.2	958
64	Posttranslational modifications control FoxO3 activity during denervation. American Journal of Physiology - Cell Physiology, 2012, 302, C587-C596.	2.1	96
65	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
66	Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy, 2011, 7, 1415-1423.	4.3	216
67	JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. Journal of Cell Biology, 2010, 191, 101-113.	2.3	127
68	Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB Journal, 2009, 23, 3896-3905.	0.2	196
69	Smad2 and 3 transcription factors control muscle mass in adulthood. American Journal of Physiology - Cell Physiology, 2009, 296, C1248-C1257.	2.1	385
70	FoxO3 Controls Autophagy in Skeletal Muscle In Vivo. Cell Metabolism, 2007, 6, 458-471.	7.2	1,614
71	PGC-1Â protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16260-16265.	3.3	841
72	Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell, 2004, 117, 399-412.	13.5	2,490

#	Article	IF	CITATIONS
73	Beneficial Effects on Skeletal Muscle of the Angiotensin II Type 1 Receptor Blocker Irbesartan in Experimental Heart Failure. Circulation, 2001, 103, 2195-2200.	1.6	76