
## Susan E Howlett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/168128/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Aerobic Exercise Attenuates Frailty in Aging Male and Female C57Bl/6 Mice and Effects Systemic<br>Cytokines Differentially by Sex. Journals of Gerontology - Series A Biological Sciences and Medical<br>Sciences, 2022, 77, 41-46.                                       | 3.6 | 12        |
| 2  | Patterns of Symptom Tracking by Caregivers and Patients With Dementia and Mild Cognitive<br>Impairment: Cross-sectional Study. Journal of Medical Internet Research, 2022, 24, e29219.                                                                                    | 4.3 | 2         |
| 3  | Preclinical frailty assessments: Phenotype and frailty index identify frailty in different mice and are variably affected by chronic medications. Experimental Gerontology, 2022, 161, 111700.                                                                            | 2.8 | 8         |
| 4  | Low testosterone concentrations and risk of ischaemic cardiovascular disease in ageing: not just a problem for older men. The Lancet Healthy Longevity, 2022, 3, e83-e84.                                                                                                 | 4.6 | 2         |
| 5  | Diurnal effects of polypharmacy with high drug burden index on physical activities over 23Âh differ<br>with age and sex. Scientific Reports, 2022, 12, 2168.                                                                                                              | 3.3 | 7         |
| 6  | Serum testosterone concentrations are not associated with frailty in naturally ageing and<br>testosterone-deficient older C57Bl/6 mice. Mechanisms of Ageing and Development, 2022, 203, 111638.                                                                          | 4.6 | 0         |
| 7  | Applying the AFRAID and FRIGHT clocks to novel preclinical mouse models of polypharmacy. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, , .                                                                                           | 3.6 | 1         |
| 8  | The Use of Dietary Supplements and Amino Acid Restriction Interventions to Reduce Frailty in Pre-Clinical Models. Nutrients, 2022, 14, 2806.                                                                                                                              | 4.1 | 0         |
| 9  | Frailty and cytokines in preclinical models: Comparisons with humans. Mechanisms of Ageing and Development, 2022, 206, 111706.                                                                                                                                            | 4.6 | 14        |
| 10 | Chronic Polypharmacy with Increasing Drug Burden Index Exacerbates Frailty and Impairs Physical<br>Function, with Effects Attenuated by Deprescribing, in Aged Mice. Journals of Gerontology - Series A<br>Biological Sciences and Medical Sciences, 2021, 76, 1010-1018. | 3.6 | 39        |
| 11 | Maladaptive Changes Associated With Cardiac Aging Are Sex-Specific and Graded by Frailty and<br>Inflammation in C57BL/6 Mice. Journals of Gerontology - Series A Biological Sciences and Medical<br>Sciences, 2021, 76, 233-243.                                          | 3.6 | 16        |
| 12 | Development of a symptom menu to facilitate Goal Attainment Scaling in adults with Down<br>syndrome-associated Alzheimer's disease: a qualitative study to identify meaningful symptoms. Journal<br>of Patient-Reported Outcomes, 2021, 5, 5.                             | 1.9 | 4         |
| 13 | Endothelin B receptor dysfunction mediates elevated myogenic tone in cerebral arteries from aged male Fischer 344 rats. GeroScience, 2021, 43, 1447-1463.                                                                                                                 | 4.6 | 12        |
| 14 | Preclinical models of frailty: Focus on interventions and their translational impact: A review.<br>Nutrition and Healthy Aging, 2021, 6, 17-33.                                                                                                                           | 1.1 | 2         |
| 15 | A classification tree to assist with routine scoring of the Clinical Frailty Scale. Age and Ageing, 2021, 50, 1406-1411.                                                                                                                                                  | 1.6 | 65        |
| 16 | A Patient-Centric Tool to Facilitate Goal Attainment Scaling in Neurogenic Bladder and Bowel Dysfunction: Path to Individualization. Value in Health, 2021, 24, 413-420.                                                                                                  | 0.3 | 2         |
| 17 | Polypharmacy Results in Functional Impairment in Mice: Novel Insights Into Age and Sex Interactions.<br>Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1748-1756.                                                                 | 3.6 | 13        |
| 18 | The Clinician's Interviewâ€Based Impression of Change (Plus caregiver input) and goal attainment in two<br>dementia drug trials: Clinical meaningfulness and the initial treatment response. Alzheimer's and<br>Dementia, 2021, 17, 856-865.                              | 0.8 | 6         |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Improved assessment of overall health in variably aged murine models of Multiple Sclerosis with a novel frailty index tool. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, , .                                                | 3.6  | 2         |
| 20 | Male–Female Differences in the Effects of Age on Performance Measures Recorded for 23 Hours in<br>Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 2141-2146.                                                         | 3.6  | 15        |
| 21 | The degree of frailty as a translational measure of health in aging. Nature Aging, 2021, 1, 651-665.                                                                                                                                                              | 11.6 | 104       |
| 22 | Signs of diastolic dysfunction are graded by serum testosterone levels in aging C57BL/6 male mice.<br>Mechanisms of Ageing and Development, 2021, 198, 111523.                                                                                                    | 4.6  | 5         |
| 23 | Sex differences in frailty: Comparisons between humans and preclinical models. Mechanisms of Ageing and Development, 2021, 198, 111546.                                                                                                                           | 4.6  | 49        |
| 24 | Biology of Frailty. , 2021, , 677-681.                                                                                                                                                                                                                            |      | 0         |
| 25 | An acute estrogen receptor agonist enhances protective effects of cardioplegia in hearts from aging male and female mice. Experimental Gerontology, 2020, 141, 111093.                                                                                            | 2.8  | 4         |
| 26 | Age, Sex and Overall Health, Measured As Frailty, Modify Myofilament Proteins in Hearts From<br>Naturally Aging Mice. Scientific Reports, 2020, 10, 10052.                                                                                                        | 3.3  | 17        |
| 27 | Age and life expectancy clocks based on machine learning analysis of mouse frailty. Nature<br>Communications, 2020, 11, 4618.                                                                                                                                     | 12.8 | 75        |
| 28 | Frailty—A promising concept to evaluate disease vulnerability. Mechanisms of Ageing and Development, 2020, 187, 111217.                                                                                                                                           | 4.6  | 25        |
| 29 | Use of Patient-Reported Symptoms from an Online Symptom Tracking Tool for Dementia Severity<br>Staging: Development and Validation of a Machine Learning Approach. Journal of Medical Internet<br>Research, 2020, 22, e20840.                                     | 4.3  | 8         |
| 30 | The Influence of Sex and Age on Responses of Isolated Ventricular Myocytes to Simulated Ischemia and Reperfusion. , 2020, , 67-85.                                                                                                                                |      | 0         |
| 31 | Peer Review of "No Time to Waste: Real-World Repurposing of Generic Drugs as a Multifaceted<br>Strategy Against COVID-19― Jmirx Med, 2020, 1, e24481.                                                                                                             | 0.4  | Ο         |
| 32 | A Murine Frailty Index Based on Clinical and Laboratory Measurements: Links Between Frailty and<br>Pro-inflammatory Cytokines Differ in a Sex-Specific Manner. Journals of Gerontology - Series A<br>Biological Sciences and Medical Sciences, 2019, 74, 275-282. | 3.6  | 58        |
| 33 | Associations between a laboratory frailty index and adverse health outcomes across age and sex.<br>Aging Medicine (Milton (N S W)), 2019, 2, 11-17.                                                                                                               | 2.1  | 23        |
| 34 | Spelunking the biology of frailty. Mechanisms of Ageing and Development, 2019, 182, 111123.                                                                                                                                                                       | 4.6  | 1         |
| 35 | Frailty Assessment in Animal Models. Gerontology, 2019, 65, 610-619.                                                                                                                                                                                              | 2.8  | 24        |
| 36 | Nutrition interventions for healthy ageing across the lifespan: a conference report. European Journal of Nutrition, 2019, 58, 1-11.                                                                                                                               | 3.9  | 42        |

| #  | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ischemia and reperfusion injury following cardioplegic arrest is attenuated by age and testosterone deficiency in male but not female mice. Biology of Sex Differences, 2019, 10, 42.                                                                                                                    | 4.1 | 16        |
| 38 | Rodent models of frailty and their application in preclinical research. Mechanisms of Ageing and Development, 2019, 179, 1-10.                                                                                                                                                                           | 4.6 | 26        |
| 39 | Long-term testosterone deficiency modifies myofilament and calcium-handling proteins and promotes<br>diastolic dysfunction in the aging mouse heart. American Journal of Physiology - Heart and<br>Circulatory Physiology, 2019, 316, H768-H780.                                                         | 3.2 | 20        |
| 40 | The biology of frailty in humans and animals: Understanding frailty and promoting translation. Aging Medicine (Milton (N S W)), 2019, 2, 27-34.                                                                                                                                                          | 2.1 | 53        |
| 41 | Age-related deficit accumulation and the diseases of ageing. Mechanisms of Ageing and Development, 2019, 180, 107-116.                                                                                                                                                                                   | 4.6 | 112       |
| 42 | MACHINE LEARNING ANALYSIS OF MOUSE FRAILTY FOR PREDICTION OF BIOLOGICAL AGE AND LIFE EXPECTANCY. Innovation in Aging, 2019, 3, S903-S903.                                                                                                                                                                | 0.1 | 5         |
| 43 | Chronic Treatment With the ACE Inhibitor Enalapril Attenuates the Development of Frailty and<br>Differentially Modifies Pro- and Anti-inflammatory Cytokines in Aging Male and Female C57BL/6 Mice.<br>Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1149-1157. | 3.6 | 61        |
| 44 | Characterizing the symptom of misplacing objects in people with dementia: findings from an online tracking tool. International Psychogeriatrics, 2019, 31, 1635-1641.                                                                                                                                    | 1.0 | 10        |
| 45 | The Symptoms Targeted for Monitoring in a Web-Based Tracking Tool by Caregivers of People With<br>Dementia and Agitation: Cross-Sectional Study. Journal of Medical Internet Research, 2019, 21, e13360.                                                                                                 | 4.3 | 11        |
| 46 | Biology of Frailty. , 2019, , 1-5.                                                                                                                                                                                                                                                                       |     | 0         |
| 47 | Coxsackievirus B3-Induced Myocarditis: New Insights Into a Female Advantage. Canadian Journal of<br>Cardiology, 2018, 34, 354-355.                                                                                                                                                                       | 1.7 | 3         |
| 48 | P3â€017: COMPARISON OF A FRAILTY INDEX TOOL BASED ON CLINICAL ASSESSMENT WITH ONE BASED ON<br>Routinely COLLECTED LABORATORY SAFETY DATA: LINKS BETWEEN FRAILTY, ADVERSE EVENTS, AND<br>FUNCTION IN THE SETTING OF AN ALZHEIMER'S DISEASE CLINICAL TRIAL. Alzheimer's and Dementia, 2018, 14,<br>P1069.  | 0.8 | 0         |
| 49 | Fifteen years of progress in understanding frailty and health in aging. BMC Medicine, 2018, 16, 220.                                                                                                                                                                                                     | 5.5 | 102       |
| 50 | Differences in Cardiovascular Aging in Men and Women. Advances in Experimental Medicine and<br>Biology, 2018, 1065, 389-411.                                                                                                                                                                             | 1.6 | 46        |
| 51 | Sex Differences in Healthspan Predict Lifespan in the 3xTg-AD Mouse Model of Alzheimer's Disease.<br>Frontiers in Aging Neuroscience, 2018, 10, 172.                                                                                                                                                     | 3.4 | 46        |
| 52 | Approaches to the Assessment of Frailty in Animal Models. , 2018, , 551-561.                                                                                                                                                                                                                             |     | 2         |
| 53 | Heterogeneity of Human Aging and Its Assessment. Journals of Gerontology - Series A Biological<br>Sciences and Medical Sciences, 2017, 72, glw089.                                                                                                                                                       | 3.6 | 97        |
| 54 | The impact of age and frailty on ventricular structure and function in C57BL/6J mice. Journal of Physiology, 2017, 595, 3721-3742.                                                                                                                                                                       | 2.9 | 43        |

| #  | Article                                                                                                                                                                                                                      | IF               | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 55 | Implementation of the mouse frailty index. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1149-1155.                                                                                                             | 1.4              | 19        |
| 56 | Advances in Preclinical Models of Frailty. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 867-869.                                                                                   | 3.6              | 5         |
| 57 | A Comparison of Two Mouse Frailty Assessment Tools. Journals of Gerontology - Series A Biological<br>Sciences and Medical Sciences, 2017, 72, 904-909.                                                                       | 3.6              | 32        |
| 58 | Acute exposure to progesterone attenuates cardiac contraction by modifying myofilament calcium sensitivity in the female mouse heart. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H46-H59. | 3.2              | 16        |
| 59 | Clinical meaningfulness of Alzheimer's Disease Assessment Scale–Cognitive subscale change in<br>relation to goal attainment in patients on cholinesterase inhibitors. Alzheimer's and Dementia, 2017,<br>13, 1098-1106.      | 0.8              | 20        |
| 60 | The association between frailty, the metabolic syndrome, and mortality over the lifespan.<br>GeroScience, 2017, 39, 221-229.                                                                                                 | 4.6              | 54        |
| 61 | Atrial structure, function and arrhythmogenesis in aged and frail mice. Scientific Reports, 2017, 7, 44336.                                                                                                                  | 3.3              | 55        |
| 62 | Sex differences in frailty: A systematic review and meta-analysis. Experimental Gerontology, 2017, 89, 30-40.                                                                                                                | 2.8              | 414       |
| 63 | A frailty index from common clinical and laboratory tests predicts increased risk of death across the<br>life course. GeroScience, 2017, 39, 447-455.                                                                        | 4.6              | 115       |
| 64 | A Frailty Index Based On Deficit Accumulation Quantifies Mortality Risk in Humans and in Mice.<br>Scientific Reports, 2017, 7, 43068.                                                                                        | 3.3              | 192       |
| 65 | The impact of ovariectomy on cardiac excitation-contraction coupling is mediated through cAMP/PKA-dependent mechanisms. Journal of Molecular and Cellular Cardiology, 2017, 111, 51-60.                                      | 1.9              | 23        |
| 66 | [P2–287]: WHAT DOES THE SYMPTOM OF MISPLACING OBJECTS MEAN IN PEOPLE WITH DEMENTIA? FINDING FROM AN ONLINE TRACKING TOOL. Alzheimer's and Dementia, 2017, 13, P725.                                                          | S <sub>0.8</sub> | 0         |
| 67 | Development of a Rat Clinical Frailty Index. Journals of Gerontology - Series A Biological Sciences and<br>Medical Sciences, 2017, 72, 897-903.                                                                              | 3.6              | 47        |
| 68 | Animal models of frailty: current applications in clinical research. Clinical Interventions in Aging, 2016, Volume 11, 1519-1529.                                                                                            | 2.9              | 46        |
| 69 | Commentary: Age-related neurodegenerative disease research needs aging models. Frontiers in Aging<br>Neuroscience, 2016, 8, 9.                                                                                               | 3.4              | 22        |
| 70 | Screening for Frailty in Canada's Health Care System: A Time for Action. Canadian Journal on Aging, 2016, 35, 281-297.                                                                                                       | 1.1              | 94        |
| 71 | Report of the National Heart, Lung, and Blood Institute Working Group on Sex Differences Research in<br>Cardiovascular Disease. Hypertension, 2016, 67, 802-807.                                                             | 2.7              | 58        |
| 72 | A frailty index based on laboratory deficits in community-dwelling men predicted their risk of adverse<br>health outcomes. Age and Ageing, 2016, 45, 463-468.                                                                | 1.6              | 90        |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Sex Differences in the Biology and Pathology of the Aging Heart. Canadian Journal of Cardiology, 2016, 32, 1065-1073.                                                                                                       | 1.7  | 121       |
| 74 | The impacts of age and frailty on heart rate and sinoatrial node function. Journal of Physiology, 2016, 594, 7105-7126.                                                                                                     | 2.9  | 75        |
| 75 | Novel cardioprotection strategies for the aged heart: evidence from preâ€clinical studies. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 1251-1260.                                                      | 1.9  | 6         |
| 76 | Adverse Geriatric Outcomes Secondary to Polypharmacy in a Mouse Model: The Influence of Aging.<br>Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 571-577.                           | 3.6  | 59        |
| 77 | Impact of Longevity Interventions on a Validated Mouse Clinical Frailty Index. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 333-339.                                              | 3.6  | 122       |
| 78 | Testosterone modulates cardiac contraction and calcium homeostasis: cellular and molecular mechanisms. Biology of Sex Differences, 2015, 6, 9.                                                                              | 4.1  | 63        |
| 79 | Factors That Influence Reliability of the Mouse Clinical Frailty Index. Journals of Gerontology - Series<br>A Biological Sciences and Medical Sciences, 2015, 70, 696-696.                                                  | 3.6  | 8         |
| 80 | A Frailty Index Based on Common Laboratory Tests in Comparison With a Clinical Frailty Index for<br>Older Adults in Long-Term Care Facilities. Journal of the American Medical Directors Association,<br>2015, 16, 842-847. | 2.5  | 84        |
| 81 | Reliability of a Frailty Index Based on the Clinical Assessment of Health Deficits in Male C57BL/6J Mice.<br>Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 686-693.                | 3.6  | 70        |
| 82 | How cardiomyocyte excitation, calcium release and contraction become altered with age. Journal of<br>Molecular and Cellular Cardiology, 2015, 83, 62-72.                                                                    | 1.9  | 103       |
| 83 | Frailty: Scaling from Cellular Deficit Accumulation?. Interdisciplinary Topics in Gerontology and Geriatrics, 2015, 41, 1-14.                                                                                               | 2.6  | 18        |
| 84 | Assessment of Frailty in Animal Models. Interdisciplinary Topics in Gerontology and Geriatrics, 2015, 41, 15-25.                                                                                                            | 2.6  | 16        |
| 85 | The Na+/Ca2+ exchange inhibitor SEA0400 limits intracellular Ca2+ accumulation and improves recovery of ventricular function when added to cardioplegia. Journal of Cardiothoracic Surgery, 2014, 9, 11.                    | 1.1  | 6         |
| 86 | A Clinical Frailty Index in Aging Mice: Comparisons With Frailty Index Data in Humans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 621-632.                                      | 3.6  | 322       |
| 87 | Standard laboratory tests to identify older adults at increased risk of death. BMC Medicine, 2014, 12, 171.                                                                                                                 | 5.5  | 193       |
| 88 | Microbial shifts in the aging mouse gut. Microbiome, 2014, 2, 50.                                                                                                                                                           | 11.1 | 354       |
| 89 | Ageing: Develop models of frailty. Nature, 2014, 512, 253-253.                                                                                                                                                              | 27.8 | 31        |
| 90 | Sex differences in SR Ca2+ release in murine ventricular myocytes are regulated by the cAMP/PKA pathway. Journal of Molecular and Cellular Cardiology, 2014, 75, 162-173.                                                   | 1.9  | 66        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Cardiac contraction, calcium transients, and myofilament calcium sensitivity fluctuate with the<br>estrous cycle in young adult female mice. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2014, 306, H938-H953.              | 3.2 | 28        |
| 92  | Cannabinoid and lipid-mediated vasorelaxation in retinal microvasculature. European Journal of Pharmacology, 2014, 735, 105-114.                                                                                                                      | 3.5 | 48        |
| 93  | Sex differences in mechanisms of cardiac excitation–contraction coupling. Pflugers Archiv European<br>Journal of Physiology, 2013, 465, 747-763.                                                                                                      | 2.8 | 108       |
| 94  | Alterations in ventricular K <sub>ATP</sub> channel properties during aging. Aging Cell, 2013, 12, 167-176.                                                                                                                                           | 6.7 | 16        |
| 95  | New horizons in frailty: ageing and the deficit-scaling problem. Age and Ageing, 2013, 42, 416-423.                                                                                                                                                   | 1.6 | 71        |
| 96  | The Impact of Ovariectomy on Calcium Homeostasis and Myofilament Calcium Sensitivity in the Aging Mouse Heart. PLoS ONE, 2013, 8, e74719.                                                                                                             | 2.5 | 28        |
| 97  | A Procedure for Creating a Frailty Index Based on Deficit Accumulation in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 217-227.                                                                | 3.6 | 155       |
| 98  | Ovariectomy enhances SR Ca2+ release and increases Ca2+ spark amplitudes in isolated ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 32-42.                                                                             | 1.9 | 35        |
| 99  | H-89 decreases the gain of excitation–contraction coupling and attenuates calcium sparks in the absence of beta-adrenergic stimulation. European Journal of Pharmacology, 2012, 691, 163-172.                                                         | 3.5 | 18        |
| 100 | Age-associated alterations in retinal arteriole reactivity to endothelin-1 differ between the sexes.<br>Mechanisms of Ageing and Development, 2012, 133, 611-619.                                                                                     | 4.6 | 9         |
| 101 | Orthostatic hypotension (OH) and mortality in relation to age, blood pressure and frailty. Archives of Gerontology and Geriatrics, 2012, 54, e255-e260.                                                                                               | 3.0 | 47        |
| 102 | Age and Ovariectomy Abolish Beneficial Effects of Female Sex on Rat Ventricular Myocytes Exposed to Simulated Ischemia and Reperfusion. PLoS ONE, 2012, 7, e38425.                                                                                    | 2.5 | 46        |
| 103 | Protecting the aged heart during cardiac surgery: The potential benefits of del Nido cardioplegia.<br>Journal of Thoracic and Cardiovascular Surgery, 2011, 141, 762-770.                                                                             | 0.8 | 81        |
| 104 | Searching for the ideal inotropic agent to rescue a failing heart. Cardiovascular Research, 2011, 91, 371-372.                                                                                                                                        | 3.8 | 2         |
| 105 | Effect of age on cardiac excitation–contraction coupling. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 1-7.                                                                                                                       | 1.9 | 58        |
| 106 | Sex differences in mechanisms of cardiac excitation-contraction coupling in rat ventricular<br>myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H36-H45.                                                       | 3.2 | 85        |
| 107 | Age-associated changes in excitation-contraction coupling are more prominent in ventricular<br>myocytes from male rats than in myocytes from female rats. American Journal of Physiology - Heart<br>and Circulatory Physiology, 2010, 298, H659-H670. | 3.2 | 73        |
|     |                                                                                                                                                                                                                                                       |     |           |

108 Effects of Aging on the Cardiovascular System. , 2010, , 91-96.

| #   | Article                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | ß-adrenoceptor stimulation exacerbates detrimental effects of ischemia and reperfusion in isolated guinea pig ventricular myocytes. European Journal of Pharmacology, 2009, 602, 364-372.                                                                                                | 3.5 | 10        |
| 110 | Pediatric Cardioplegia Strategy Results in Enhanced Calcium Metabolism and Lower Serum Troponin T.<br>Annals of Thoracic Surgery, 2009, 87, 1517-1523.                                                                                                                                   | 1.3 | 99        |
| 111 | Differential effects of the sodium calcium exchange inhibitor, KB-R7943, on ischemia and reperfusion<br>injury in isolated guinea pig ventricular myocytes. European Journal of Pharmacology, 2008, 580,<br>214-223.                                                                     | 3.5 | 16        |
| 112 | The age-related decrease in catecholamine sensitivity is mediated by ß1-adrenergic receptors linked to a<br>decrease in adenylate cyclase activity in ventricular myocytes from male Fischer 344 rats. Mechanisms<br>of Ageing and Development, 2008, 129, 735-744.                      | 4.6 | 21        |
| 113 | Hypothermia increases the gain of excitation-contraction coupling in guinea pig ventricular myocytes.<br>American Journal of Physiology - Cell Physiology, 2008, 295, C692-C700.                                                                                                         | 4.6 | 37        |
| 114 | Simulated ischemia-induced preconditioning of isolated ventricular myocytes from young adult and<br>aged Fischer-344 rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2008,<br>295, H768-H777.                                                             | 3.2 | 14        |
| 115 | Effects of ischemia and reperfusion on isolated ventricular myocytes from young adult and aged<br>Fischer 344 rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294,<br>H2174-H2183.                                                                  | 3.2 | 53        |
| 116 | Reduced catecholamine sensitivity is related to a decrease in adenylate cyclase activity mediated by<br>ß1â€adrenergic receptor signaling in aged ventricular myocytes. FASEB Journal, 2008, 22, 1129.18.                                                                                | 0.5 | 0         |
| 117 | Lipid-Lowering Agents and the Risk of Cognitive Impairment That Does Not Meet Criteria for Dementia,<br>in Relation to Apolipoprotein E Status. Neuroepidemiology, 2007, 29, 201-207.                                                                                                    | 2.3 | 14        |
| 118 | The effects of isoproterenol on abnormal electrical and contractile activity and diastolic calcium are attenuated in myocytes from aged Fischer 344 rats. Mechanisms of Ageing and Development, 2007, 128, 566-573.                                                                      | 4.6 | 9         |
| 119 | Cardiac excitation-contraction coupling is altered in myocytes from aged male mice but not in cells<br>from aged female mice. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291,<br>H2362-H2370.                                                              | 3.2 | 63        |
| 120 | Calcium spark properties in ventricular myocytes are altered in aged mice. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2006, 290, H1566-H1574.                                                                                                                 | 3.2 | 43        |
| 121 | Increases in diastolic [Ca2+] can contribute to positive inotropy in guinea pig ventricular myocytes in the absence of changes in amplitudes of Ca2+ transients. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1623-H1634.                              | 3.2 | 20        |
| 122 | Protein Kinase A-Mediated Phosphorylation Contributes to Enhanced Contraction Observed in Mice<br>That Overexpress β-Adrenergic Receptor Kinase-1. Journal of Pharmacology and Experimental<br>Therapeutics, 2006, 319, 1307-1316.                                                       | 2.5 | 4         |
| 123 | Characterization of membrane N-glycan binding sites of lysozyme for cardiac depression in sepsis.<br>Intensive Care Medicine, 2005, 31, 129-137.                                                                                                                                         | 8.2 | 18        |
| 124 | Attentuation of Cardiac Stunning by Losartan in a Cellular Model of Ischemia and Reperfusion Is<br>Accompanied by Increased Sarcoplasmic Reticulum Ca2+ Stores and Prevention of Cytosolic Ca2+<br>Elevation. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 238-247. | 2.5 | 8         |
| 125 | Pretreatment with Pinacidil Promotes Arrhythmias in an Isolated Tissue Model of Cardiac Ischemia and Reperfusion. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 823-830.                                                                                             | 2.5 | 11        |
| 126 | Overexpression of human β2-adrenergic receptors increases gain of excitation-contraction coupling in mouse ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1029-H1038.                                                              | 3.2 | 12        |

| #   | Article                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Diminished Inotropic Response to Amrinone in Ventricular Myocytes from Myopathic Hamsters Is<br>Linked to Depression of High-Gain Ca2+-Induced Ca2+ Release. Journal of Pharmacology and<br>Experimental Therapeutics, 2004, 310, 761-773.                                                                          | 2.5 | 7         |
| 128 | Prevalence, Attributes, and Outcomes of Fitness and Frailty in Community-Dwelling Older Adults:<br>Report From the Canadian Study of Health and Aging. Journals of Gerontology - Series A Biological<br>Sciences and Medical Sciences, 2004, 59, 1310-1317.                                                         | 3.6 | 463       |
| 129 | l-Arginine ameliorates effects of ischemia and reperfusion in isolated cardiac myocytes. European<br>Journal of Pharmacology, 2003, 476, 45-54.                                                                                                                                                                     | 3.5 | 3         |
| 130 | Responsiveness of goal attainment scaling in a randomized controlled trial of comprehensive geriatric assessment. Journal of Clinical Epidemiology, 2003, 56, 736-743.                                                                                                                                              | 5.0 | 164       |
| 131 | Differential Effects of Phosphodiesterase-Sensitive and -Resistant Analogs of cAMP on Initiation of<br>Contraction in Cardiac Ventricular Myocytes. Journal of Pharmacology and Experimental<br>Therapeutics, 2003, 306, 166-178.                                                                                   | 2.5 | 6         |
| 132 | Calcium sparks in mouse ventricular myocytes at physiological temperature. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2003, 285, H1495-H1505.                                                                                                                                            | 3.2 | 23        |
| 133 | Changes in excitation-contraction coupling in an isolated ventricular myocyte model of cardiac stunning. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H800-H810.                                                                                                                   | 3.2 | 38        |
| 134 | Syntheses, Calcium Channel Agonistâ <sup>~?</sup> Antagonist Modulation Activities, Nitric Oxide Release, and<br>Voltage-Clamp Studies of 2-Nitrooxyethyl 1,4-Dihydro-<br>2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)pyridine-5-carboxylate Enantiomers. Journal of<br>Medicinal Chemistry, 2002, 45, 955-961. | 6.4 | 28        |
| 135 | Regulation of contraction and relaxation by membrane potential in cardiac ventricular myocytes.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1618-H1626.                                                                                                                       | 3.2 | 18        |
| 136 | Increased Expression of the Gene for α-Interferon-Inducible Protein in Cardiomyopathic Hamster Heart.<br>Biochemical and Biophysical Research Communications, 2000, 267, 103-108.                                                                                                                                   | 2.1 | 7         |
| 137 | Losartan improves recovery of contraction and inhibits transient inward current in a cellular model of cardiac ischemia and reperfusion. Journal of Pharmacology and Experimental Therapeutics, 2000, 295, 697-704.                                                                                                 | 2.5 | 11        |
| 138 | Role of voltage-sensitive release mechanism in depression of cardiac contraction in myopathic<br>hamsters. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1690-H1700.                                                                                                               | 3.2 | 9         |
| 139 | Role of cAMP-dependent protein kinase A in activation of a voltage-sensitive release mechanism for cardiac contraction in guinea-pig myocytes. Journal of Physiology, 1998, 513, 185-201.                                                                                                                           | 2.9 | 37        |
| 140 | â€Voltage-activated Ca release" in rabbit, rat and guinea-pig cardiac myocytes, and modulation by<br>internal cAMP. Pflugers Archiv European Journal of Physiology, 1997, 435, 164-173.                                                                                                                             | 2.8 | 59        |
| 141 | Synthesis and Smooth Muscle Calcium Channel Effects of Dialkyl<br>1,4-Dihydro-2,6-dimethyl-4-aryl-3,5-pyridinedicarboxylates Containing a Nitrone Moiety in the 4-Aryl<br>Substituent. Archiv Der Pharmazie, 1997, 330, 53-58.                                                                                      | 4.1 | 3         |
| 142 | Synthesis and Calcium Channel Modulating Effects of Isopropyl<br>1,4-Dihydro-2,6-dimethyl-3-nitro-4-(thienyl)-5-pyridinecarboxylates. Archiv Der Pharmazie, 1997, 330,<br>290-294.                                                                                                                                  | 4.1 | 18        |
| 143 | The voltage-sensitive release mechanism: a new trigger for cardiac contraction. Canadian Journal of<br>Physiology and Pharmacology, 1997, 75, 1044-1057.                                                                                                                                                            | 1.4 | 11        |
| 144 | Contractile properties of myocardium are altered in dystrophin-deficient mdx mice. Journal of the<br>Neurological Sciences, 1996, 142, 17-24.                                                                                                                                                                       | 0.6 | 35        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Calcium currents in ventricular myocytes of prehypertrophic cardiomyopathic hamsters. American<br>Journal of Physiology - Heart and Circulatory Physiology, 1995, 268, H999-H1005.                                | 3.2 | 11        |
| 146 | Contractions in guineaâ€pig ventricular myocytes triggered by a calciumâ€release mechanism separate<br>from Na+ and Lâ€currents Journal of Physiology, 1995, 484, 107-122.                                        | 2.9 | 61        |
| 147 | The Force-Interval Relation in Aged Hamster Heart. Journals of Gerontology - Series A Biological<br>Sciences and Medical Sciences, 1995, 50A, B224-B231.                                                          | 3.6 | 3         |
| 148 | Simulated ischaemia and reperfusion in isolated guinea pig ventricular myocytes. Cardiovascular<br>Research, 1994, 28, 1794-1802.                                                                                 | 3.8 | 61        |
| 149 | Density of Ryanodine Receptors is Increased in Sarcoplasmic Reticulum from Prehypertrophic<br>Cardiomyopathic Hamster Heart. Journal of Molecular and Cellular Cardiology, 1994, 26, 325-334.                     | 1.9 | 27        |
| 150 | Density of 1,4-dihydropyridine receptors decreases in the hearts of aging hamsters. Journal of<br>Molecular and Cellular Cardiology, 1992, 24, 885-894.                                                           | 1.9 | 14        |
| 151 | Unblock of the slow inward current induces the arrhythmogenic transient inward current in isolated guinea-pig myocytes. Journal of Molecular and Cellular Cardiology, 1992, 24, 125-132.                          | 1.9 | 1         |
| 152 | [3H]-nitrendipine binding in normal and cardiomyopathic hamster hearts: Modulation by temperature, verapamil and diltiazem. Journal of Molecular and Cellular Cardiology, 1990, 22, 975-985.                      | 1.9 | 3         |
| 153 | Radioligand binding to muscle homogenates to quantify receptor and ion channel numbers. Journal of Pharmacological Methods, 1988, 20, 313-321.                                                                    | 0.7 | 12        |
| 154 | Responsiveness of normal and dystrophic avian muscle to acetylcholine, carbamylcholine and d-tubocurarine. General Pharmacology, 1988, 19, 697-701.                                                               | 0.7 | 0         |
| 155 | [3H]-Nitrendipine binding sites in normal and cardiomyopathic hamsters: absence of a selective<br>increase in putative calcium channels in cardiomyopathic hearts. Cardiovascular Research, 1988, 22,<br>840-846. | 3.8 | 16        |
| 156 | Calcium channels in normal and dystrophic hamster cardiac muscle. Biochemical Pharmacology, 1987, 36, 2653-2659.                                                                                                  | 4.4 | 19        |
| 157 | Electrophysiologic differences between normal and dystrophic avian muscle. Experimental<br>Neurology, 1986, 94, 416-425.                                                                                          | 4.1 | 3         |
| 158 | Sex differences in the phenotypic expression of avian dystrophy. Experimental Neurology, 1983, 81, 50-63.                                                                                                         | 4.1 | 3         |
| 159 | Heterogeneity of Human Aging and Its Assessment. Journals of Gerontology - Series A Biological<br>Sciences and Medical Sciences, 0, , glw089.                                                                     | 3.6 | 1         |