
Fritz G Rathjen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/168120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensory Neurons: The Formation of T-Shaped Branches Is Dependent on a cGMP-Dependent Signaling Cascade. Neuroscientist, 2021, 27, 47-57.	3.5	5
2	Early-Life Stress Regulates Cardiac Development through an IL-4-Glucocorticoid Signaling Balance. Cell Reports, 2020, 33, 108404.	6.4	14
3	The CAR group of Ig cell adhesion proteins–Regulators of gap junctions?. BioEssays, 2020, 42, e2000031.	2.5	11
4	Early Days of Tenascin-R Research: Two Approaches Discovered and Shed Light on Tenascin-R. Frontiers in Immunology, 2020, 11, 612482.	4.8	10
5	The cell adhesion protein CAR is a negative regulator of synaptic transmission. Scientific Reports, 2019, 9, 6768.	3.3	17
6	The IgCAM CLMP is required for intestinal and ureteral smooth muscle contraction by regulating Connexin43 and 45 expression in mice. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	23
7	Regulation of the Natriuretic Peptide Receptor 2 (Npr2) by Phosphorylation of Juxtamembrane Serine and Threonine Residues Is Essential for Bifurcation of Sensory Axons. Journal of Neuroscience, 2018, 38, 9768-9780.	3.6	14
8	S-palmitoylation Is Required for the Control of Growth Cone Morphology of DRG Neurons by CNP-Induced cGMP Signaling. Frontiers in Molecular Neuroscience, 2018, 11, 345.	2.9	13
9	Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO Journal, 2018, 37, .	7.8	45
10	Loss of Axon Bifurcation in Mesencephalic Trigeminal Neurons Impairs the Maximal Biting Force in Npr2-Deficient Mice. Frontiers in Cellular Neuroscience, 2018, 12, 153.	3.7	23
11	The Absence of Sensory Axon Bifurcation Affects Nociception and Termination Fields of Afferents in the Spinal Cord. Frontiers in Molecular Neuroscience, 2018, 11, 19.	2.9	27
12	Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade. International Journal of Molecular Sciences, 2018, 19, 1266.	4.1	22
13	The cell adhesion molecule BT-IgSF is essential for a functional blood–testis barrier and male fertility in mice. Journal of Biological Chemistry, 2017, 292, 21490-21503.	3.4	33
14	Cell-cell communication mediated by the CAR subgroup of immunoglobulin cell adhesion molecules in health and disease. Molecular and Cellular Neurosciences, 2017, 81, 32-40.	2.2	20
15	Dorsal root ganglion axon bifurcation tolerates increased cyclic <scp>GMP</scp> levels: the role of phosphodiesterase 2A and scavenger receptor Npr3. European Journal of Neuroscience, 2016, 44, 2991-3000.	2.6	22
16	The Ig CAM CAR is Implicated in Cardiac Development and Modulates Electrical Conduction in the Mature Heart. Journal of Cardiovascular Development and Disease, 2014, 1, 111-120.	1.6	4
17	The IgCAMs CAR, BT-IgSF, and CLMP: Structure, Function, and Diseases. Advances in Neurobiology, 2014, 8, 21-45.	1.8	12
18	Bifurcation of Axons from Cranial Sensory Neurons Is Disabled in the Absence of Npr2-Induced cGMP Signaling. Journal of Neuroscience, 2014, 34, 737-747.	3.6	58

Fritz G Rathjen

#	Article	IF	CITATIONS
19	Regulation of Adhesion by Flexible Ectodomains of IgCAMs. Neurochemical Research, 2013, 38, 1092-1099.	3.3	9
20	A Genetic Strategy for the Analysis of Individual Axon Morphologies in cGMP Signalling Mutant Mice. Methods in Molecular Biology, 2013, 1020, 193-204.	0.9	7
21	Impaired presynaptic function and elimination of synapses at premature stages during postnatal development of the cerebellum in the absence of CALEB (CSPG5/neuroglycan C). European Journal of Neuroscience, 2013, 38, 3270-3280.	2.6	17
22	Functional Inactivation of the Genome-Wide Association Study Obesity Gene Neuronal Growth Regulator 1 in Mice Causes a Body Mass Phenotype. PLoS ONE, 2012, 7, e41537.	2.5	66
23	cGMP signaling and branching of sensory axons in the spinal cord. Future Neurology, 2012, 7, 639-651.	0.5	1
24	Dil-Labeling of DRG Neurons to Study Axonal Branching in a Whole Mount Preparation of Mouse Embryonic Spinal Cord. Journal of Visualized Experiments, 2011, , .	0.3	25
25	Signalling mechanisms regulating axonal branching <i>in vivo</i> . BioEssays, 2010, 32, 977-985.	2.5	67
26	The Coxsackievirus–Adenovirus Receptor Reveals Complex Homophilic and Heterophilic Interactions on Neural Cells. Journal of Neuroscience, 2010, 30, 2897-2910.	3.6	60
27	C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16847-16852.	7.1	84
28	Early maturation of GABAergic synapses in mouse retinal ganglion cells. International Journal of Developmental Neuroscience, 2008, 26, 233-238.	1.6	8
29	The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord. Journal of Cell Biology, 2007, 179, 331-340.	5.2	90
30	Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development. Journal of Cell Science, 2005, 118, 3509-3521.	2.0	121
31	Neurotractin/kilon promotes neurite outgrowth and is expressed on reactive astrocytes after entorhinal cortex lesion. Molecular and Cellular Neurosciences, 2005, 29, 580-590.	2.2	73
32	Impaired Synapse Function during Postnatal Development in the Absence of CALEB, an EGF-like Protein Processed by Neuronal Activity. Neuron, 2005, 46, 233-245.	8.1	34
33	cGMP-mediated signaling via cGKIα is required for the guidance and connectivity of sensory axons. Journal of Cell Biology, 2002, 159, 489-498.	5.2	116
34	Tenascin-R Induces Actin-Rich Microprocesses and Branches along Neurite Shafts. Molecular and Cellular Neurosciences, 2002, 21, 626-633.	2.2	22
35	CALEB Binds via Its Acidic Stretch to the Fibrinogen-like Domain of Tenascin-C or Tenascin-R and Its Expression Is Dynamically Regulated after Optic Nerve Lesion. Journal of Biological Chemistry, 2001, 276, 7337-7345.	3.4	31
36	Neurotractin, A Novel Neurite Outgrowth-promoting Ig-like Protein that Interacts with CEPU-1 and LAMP. Journal of Cell Biology, 1999, 145, 865-876.	5.2	66

Fritz G Rathjen

#	Article	IF	CITATIONS
37	Neural cell recognition molecule L1: from cell biology to human hereditary brain malformations. Current Opinion in Neurobiology, 1998, 8, 87-97.	4.2	221
38	Dissection of Complex Molecular Interactions of Neurofascin with Axonin-1, F11, and Tenascin-R, Which Promote Attachment and Neurite Formation of Tectal Cells. Journal of Cell Biology, 1998, 142, 1083-1093.	5.2	99
39	Chicken Acidic Leucine-rich EGF-like Domain Containing Brain Protein (CALEB), a Neural Member of the EGF Family of Differentiation Factors, Is Implicated in Neurite Formation. Journal of Cell Biology, 1997, 136, 895-906.	5.2	51
40	Organization of the Neurofascin Gene and Analysis of Developmentally Regulated Alternative Splicing. Journal of Biological Chemistry, 1997, 272, 28742-28749.	3.4	61
41	Structure/function relationships of axon-associated adhesion receptors of the immunoglobulin superfamily. Current Opinion in Neurobiology, 1996, 6, 584-593.	4.2	165
42	Neural cell recognition molecule F11: Membrane interaction by covalently attached phosphatidylinositol. Biochemical and Biophysical Research Communications, 1989, 161, 931-938.	2.1	35